Herbaspirillum seropedicae

Last updated

Herbaspirillum seropedicae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Oxalobacteraceae
Genus: Herbaspirillum
Species:
H. seropedicae
Binomial name
Herbaspirillum seropedicae
(Leifson 1962) Ding and Yokota 2004

Herbaspirillum seropedicae is a betaproteobacteria which is an endophytic diazotroph and forms nitrogen-fixing associations with maize ( Zea mays ), rice ( Oryza sativa ), sorghum ( Sorghum bicolor ), sugar cane ( Saccharum officinarum ), bananas ( Musa ) and pineapple ( Ananas comosus ). H. seropedicae is a potential nitrogen biofertilizer. [1] Studies have shown that rice with H. seropedicae inoculated increases the yield to an equivalent of 40 kg N/ha. [2]

Related Research Articles

Nitrogen fixation is a chemical process by which molecular nitrogen (N
2
), which has a strong triple covalent bond, is converted into ammonia (NH
3
) or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. The nitrogen in air is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation or diazotrophy is an important microbe-mediated process that converts dinitrogen (N2) gas to ammonia (NH3) using the nitrogenase protein complex (Nif).

<span class="mw-page-title-main">Endophyte</span>

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth, nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores. Although endophytic bacteria and fungi are frequently studied, endophytic archaea are increasingly being considered for their role in plant growth promotion as part of the core microbiome of a plant.

<i>Striga</i> Genus of flowering plants belonging to the broomrape family

Striga, commonly known as witchweed, is a genus of parasitic plants that occur naturally in parts of Africa, Asia, and Australia. It is currently classified in the family Orobanchaceae, although older classifications place it in the Scrophulariaceae. Some species are serious pathogens of cereal crops, with the greatest effects being in savanna agriculture in Africa. It also causes considerable crop losses in other regions, including other tropical and subtropical crops in its native range and in the Americas. The generic name derives from Latin strī̆ga, "witch."

<span class="mw-page-title-main">Seropédica</span> Municipality in Southeast, Brazil

Seropédica is a municipality located in Greater Rio de Janeiro, Brazil, 75 km from the state capital of Rio de Janeiro. Its population was 83,092 (2020) and its area is 284 km².

<i>Sorghum bicolor</i> Species of plant

Sorghum bicolor, commonly called sorghum and also known as great millet, broomcorn, guinea corn, durra, imphee, jowar, or milo, is a grass species cultivated for its grain, which is used for food for humans, animal feed, and ethanol production. Sorghum originated in Africa, and is now cultivated widely in tropical and subtropical regions. Sorghum is the world's fifth-most important cereal crop after rice, wheat, maize, and barley, with 61,000,000 metric tons of annual global production in 2021. S. bicolor is typically an annual, but some cultivars are perennial. It grows in clumps that may reach over 4 metres (13 ft) high. The grain is small, ranging from 2 to 4 millimetres in diameter. Sweet sorghums are sorghum cultivars that are primarily grown for forage, syrup production, and ethanol; they are taller than those grown for grain.

<span class="mw-page-title-main">Commercial sorghum</span>

Commercial sorghum is the cultivation and commercial exploitation of species of grasses within the genus Sorghum. These plants are used for grain, fibre and fodder. The plants are cultivated in warmer climates worldwide. Commercial Sorghum species are native to tropical and subtropical regions of Africa and Asia.

<i>Maize dwarf mosaic virus</i> Species of plant pathogenic virus

Maize dwarf mosaic virus (MDMV) is a pathogenic plant virus of the family Potyviridae. Depending on the corn plant’s growth stage, the virus can have severe implications to the corn plant’s development which can also result in economic consequences to the producer of the crop.

<i>Sugarcane mosaic virus</i> Species of virus

Sugarcane mosaic virus (SCMV) is a plant pathogenic virus of the family Potyviridae. The virus was first noticed in Puerto Rico in 1916 and spread rapidly throughout the southern United States in the early 1920s. SCMV is of great concern because of the high economic impact it has on sugarcane and maize.

<span class="mw-page-title-main">Rhizobacteria</span> Group of bacteria affecting plant growth

Rhizobacteria are root-associated bacteria that can have a detrimental, neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.

Microbial inoculants also known as soil inoculants or bioinoculants are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

<span class="mw-page-title-main">Biofertilizer</span> Substance with micro-organisms

A biofertilizer is a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant. Biofertilizers add nutrients through the natural processes of nitrogen fixation, solubilizing phosphorus, and stimulating plant growth through the synthesis of growth-promoting substances. The micro-organisms in biofertilizers restore the soil's natural nutrient cycle and build soil organic matter. Through the use of biofertilizers, healthy plants can be grown, while enhancing the sustainability and the health of the soil. Biofertilizers can be expected to reduce the use of synthetic fertilizers and pesticides, but they are not yet able to replace their use. Since they play several roles, a preferred scientific term for such beneficial bacteria is "plant-growth promoting rhizobacteria" (PGPR).

<i>Striga hermonthica</i> Species of flowering plant

Striga hermonthica, commonly known as purple witchweed or giant witchweed, is a hemiparasitic plant that belongs to the family Orobanchaceae. It is devastating to major crops such as sorghum and rice. In sub-Saharan Africa, apart from sorghum and rice, it also infests maize, pearl millet, and sugar cane.

<i>Rhopalosiphum maidis</i> Species of true bug

Rhopalosiphum maidis, common names corn leaf aphid and corn aphid, is an insect, and a pest of maize and other crops. It has a nearly worldwide distribution and is typically found in agricultural fields, grasslands, and forest-grassland zones. Among aphids that feed on maize, it is the most commonly encountered and most economically damaging, particularly in tropical and warmer temperate areas. In addition to maize, R. maidis damages rice, sorghum, and other cultivated and wild monocots.

Herbaspirillum autotrophicum is a bacterium which cannot fix nitrogen under laboratory conditions, like Herbaspirillum seropedicae, because it does not have the Nif gene.

Herbaspirillum frisingense is a nitrogen-fixing bacterium which was found in C4-fibre plants like prairie cordgrass, Chinese silver grass,, Amur silver-grass, and Napier grass. The specific name frisingense comes from Freising, a town in Germany where H. frisingense was first isolated from prairie cordgrass and Miscanthus plants.

Herbaspirillum lusitanum is a nitrogen-fixing bacterium found in root nodules of common beans. Phylogenetic analyses have shown this bacterium belongs to the genus Herbaspirillum. H. lusitanum lacks the nif gene. A nodD-like gene is present, but no other nod genes have been identified. The lack of nif and nod genes suggests H. lusitanum is an opportunistic bacterium capable of colonizing root nodules, but is unable to fix nitrogen.

Herbaspirillum rubrisubalbicans is a nitrogen-fixing bacterium of the genus Herbaspirillum found in roots and stems of sugarcane, sorghum, and rice. H. rubrisubalbicans can cause symptoms of the mottled stripe disease in sugarcane and sorghum. Leaves inoculated with H. rubrisubalbicans show red stripes along the secondary veins of the leaf blade.

Chilo partellus, the spotted stalk borer or spotted stem borer, is a moth in the family Crambidae. It was described by Charles Swinhoe in 1885. It is found in India, Pakistan, Iran, Ethiopia, Lesotho, Madagascar, Malawi, South Africa, Sudan, Tanzania, Uganda and on Mayotte.

A nitrogen fixation package is a piece of research equipment for studying nitrogen fixation in plants. One product of this kind, the Q-Box NF1LP made by Qubit Systems, operates by measuring the hydrogen (H2) given off in the nitrogen-fixing chemical reaction enabled by nitrogenase enzymes.

<i>Azotobacter chroococcum</i> Species of bacterium

Azotobacter chroococcum is a bacterium that has the ability to fix atmospheric nitrogen. It was discovered by Martinus Beijerinck in 1901, and was the first aerobic, free-living nitrogen fixer discovered. A. chroococcum could be useful for nitrogen fixation in crops as a biofertilizer, fungicide, and nutrient indicator, and in bioremediation.

References

  1. Tadra-Sfeir, M. Z.; Souza, E. M.; Faoro, H.; Müller-Santos, M.; Baura, V. A.; Tuleski, T. R.; Rigo, L. U.; Yates, M. G.; Wassem, R.; Pedrosa, F. O.; Monteiro, R. A. (March 2011). "Naringenin Regulates Expression of Genes Involved in Cell Wall Synthesis in Herbaspirillum seropedicae" (PDF). Applied and Environmental Microbiology. 77 (6): 2180–2183. Bibcode:2011ApEnM..77.2180T. doi:10.1128/AEM.02071-10. PMC   3067312 . PMID   21257805 . Retrieved March 21, 2022.
  2. Pereira, Jar; Baldani, JI. (1995). "Selection of Azospirillum spp. and Herbaspirillum seropedicae strains to inoculate rice and maize plants". International Symposium on Sustainable Agriculture for the Tropics: The Role of Biological Nitrogen Fixation. 29: 220–221 via Soil Biology and Biochemistry.