Hogback (geology)

Last updated
Oblique aerial photo of a hogback located between Gallup and Ramah in western New Mexico. Hogback NM.jpg
Oblique aerial photo of a hogback located between Gallup and Ramah in western New Mexico.

In geology and geomorphology, a hogback or hog's back is a long, narrow ridge or a series of hills with a narrow crest and steep slopes of nearly equal inclination on both flanks. Typically, the term is restricted to a ridge created by the differential erosion of outcropping, steeply dipping (greater than 30–40°), homoclinal, and typically sedimentary strata. One side of a hogback (its backslope) consists of the surface (bedding plane) of a steeply dipping rock stratum called a dip slope. The other side (its escarpment, frontslope or "scarp slope") is an erosion face that cuts through the dipping strata that comprises the hogback. [1] [2] [3] [4] The name "hogback" comes from the Hog's Back of the North Downs in Surrey, England, which refers to the landform's resemblance in outline to the back of a hog. [1] The term is also sometimes applied to drumlins and, in Maine, to both eskers and ridges known as "horsebacks". [4]

Contents

Hogbacks are a typical regional topographic expression of outcrops of steeply dipping strata, commonly sedimentary strata, that consist of alternating beds of hard, well-lithified strata, i.e. sandstone and limestone, and either weak or loosely cemented strata, i.e. shale, mudstone, and marl. The surface of a hard, erosion-resistant layer forms the back slope (dip-slope) of the hogback where weaker strata have been preferentially stripped off of it by erosion. The opposite slope that forms the front of a hogback, which is its escarpment or scarp, consists of a slope that cuts across the bedding of the strata. Because of the steeply dipping nature of the strata that forms a hogback, a slight shift in location may take place as the landscape is lowered by erosion, but it will be a matter of feet rather than miles, as might happen with cuestas. [3] [5]

All gradations occur between hogbacks, homoclinal ridges, and cuestas. The differences between these landforms are related to the steepness in dip of the resistant beds from which they have been eroded and to their geographic extent. Where each type occurs depends upon whether the local rock attitudes are either nearly vertical, moderately dipping, or gently dipping. Because of their gradational nature, the exact angle of dip and slope that separates these landforms is arbitrary and some differences in the specific angles used to define these landforms can be found in the scientific literature. It also can be difficult to distinguish immediately adjacent members of this series of landforms. [3] [5]

Examples of hogbacks

Europe

United Kingdom

  • Hog's Back, of the North Downs in Surrey, England; the original hogback from which the landform derives its name. Formed from a monoclinal fold, leading to steeply dipping chalk beds which are more resistant to erosion than the flanking clays.

Belgium

Germany

North America

Colorado

Dinosaur Ridge, west of Denver, Colorado. It is formed by the more erosion-resistant sandstones of the Dakota Formation protecting the softer, less erosion-resistant strata of the Morrison Formation. Hogback DinoRidge.JPG
Dinosaur Ridge, west of Denver, Colorado. It is formed by the more erosion-resistant sandstones of the Dakota Formation protecting the softer, less erosion-resistant strata of the Morrison Formation.
Hogsback up Bald Mountain, in the Adirondacks of New York Hogsback up Bald Mountain, Fulton Chain , N. Y (NYPL b12647398-68524).tiff
Hogsback up Bald Mountain, in the Adirondacks of New York

Dinosaur Ridge is a well known hogback that is part of Morrison Fossil Area National Natural Landmark within Morrison, Colorado. It is a hogback formed by the differential erosion of well-cemented sandstones of the Cretaceous Dakota Formation, which form the dip slope of this hogback, overlying the less erosion-resistant and interbedded mudstone, siltstone, and thinly-bedded sandstones of the Morrison Formation of Jurassic age. Dinosaur Ridge is only a short segment of the Dakota Hogback that extends the length of the Front Range from Wyoming to southern Colorado. [6]

The Grand Hogback is a 70-mile long (110 km) ridge located in western Colorado. [7] It marks part of the boundary between the Colorado Plateau to the west and the Southern Rocky Mountains to the east. [8]

Black Hills

While most hogbacks snake along a surface in a relatively sinuous line, a few, such as those in Sundance, Wyoming, encircle a dome. The Dakota Sandstone Hogback encircles the Black Hills, an elliptical dome spanning from northwestern South Dakota to northeastern Wyoming. The Black Hills are approximately 125 miles (201 km) long and 65 miles (105 km) wide. The Dakota Hogback ridge formed when the resistant sandstones of the Dakota Sandstone and underlying strata were uplifted near the center of the present-day Black Hills because of a granite intrusion, approximately 60 million years ago. The Black Hills are the easternmost segment of the Laramide orogeny. The Dakota hogback rim separates the surrounding flat plains from the two-mile wide (3.2 km) Red Valley trench of the Black Hills. The ridge "presents a steep face towards the valley and rises several hundred feet above it. [9] [10]

Green Mountain, also known as the Little Sundance Dome, is found just east of Sundance, Wyoming. It is a circular dome about 5,900 feet (1,800 m) across and 4,600 feet (1,400 m) wide surrounded by a rim of triangular hogbacks (similar in appearance to flatirons). Green Mountain itself, much like the nearby Black Hills, is a laccolith formed by the intrusion of magma into the Earth's crust. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Escarpment</span> Steep slope or cliff separating two relatively level regions

An escarpment is a steep slope or long cliff that forms as a result of faulting or erosion and separates two relatively level areas having different elevations.

<span class="mw-page-title-main">Inselberg</span> Isolated, steep rock hill on relatively flat terrain

An inselberg or monadnock is an isolated rock hill, knob, ridge, or small mountain that rises abruptly from a gently sloping or virtually level surrounding plain. In Southern Africa a similar formation of granite is known as a koppie, an Afrikaans word from the Dutch diminutive word kopje. If the inselberg is dome-shaped and formed from granite or gneiss, it can also be called a bornhardt, though not all bornhardts are inselbergs. An inselberg results when a body of rock resistant to erosion, such as granite, occurring within a body of softer rocks, is exposed by differential erosion and lowering of the surrounding landscape.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

<span class="mw-page-title-main">Butte</span> Isolated hill with steep, often vertical sides and a small, relatively flat top

In geomorphology, a butte is an isolated hill with steep, often vertical sides and a small, relatively flat top; buttes are smaller landforms than mesas, plateaus, and tablelands. The word butte comes from the French word butte, meaning knoll ; its use is prevalent in the Western United States, including the southwest where mesa is used for the larger landform. Due to their distinctive shapes, buttes are frequently landmarks in plains and mountainous areas. To differentiate the two landforms, geographers use the rule of thumb that a mesa has a top that is wider than its height, while a butte has a top that is narrower than its height.

<span class="mw-page-title-main">Mesa</span> Elevated area of land with a flat top and sides that are usually steep cliffs

A mesa is an isolated, flat-topped elevation, ridge or hill, which is bounded from all sides by steep escarpments and stands distinctly above a surrounding plain. Mesas characteristically consist of flat-lying soft sedimentary rocks capped by a more resistant layer or layers of harder rock, e.g. shales overlain by sandstones. The resistant layer acts as a caprock that forms the flat summit of a mesa. The caprock can consist of either sedimentary rocks such as sandstone and limestone; dissected lava flows; or a deeply eroded duricrust. Unlike plateau, whose usage does not imply horizontal layers of bedrock, e.g. Tibetan Plateau, the term mesa applies exclusively to the landforms built of flat-lying strata. Instead, flat-topped plateaus are specifically known as tablelands.

<span class="mw-page-title-main">Front Range</span> Mountain range of the Southern Rocky Mountains of North America

The Front Range is a mountain range of the Southern Rocky Mountains of North America located in the central portion of the U.S. State of Colorado, and southeastern portion of the U.S. State of Wyoming. It is the first mountain range encountered as one goes westbound along the 40th parallel north across the Great Plains of North America.

<span class="mw-page-title-main">Ridge</span> Long, narrow, elevated landform

A ridge is a long, narrow, elevated geomorphologic landform, structural feature, or combination of both separated from the surrounding terrain by steep sides. The sides of a ridge slope away from a narrow top, the crest or ridgecrest, with the terrain dropping down on either side. The crest, if narrow, is also called a ridgeline. Limitations on the dimensions of a ridge are lacking. Its height above the surrounding terrain can vary from less than a meter to hundreds of meters. A ridge can be either depositional, erosional, tectonic, or combination of these in origin and can consist of either bedrock, loose sediment, lava, or ice depending on its origin. A ridge can occur as either an isolated, independent feature or part of a larger geomorphological and/or structural feature. Frequently, a ridge can be further subdivided into smaller geomorphic or structural elements.

<span class="mw-page-title-main">Cuesta</span> Hill or ridge with a gentle slope on one side and a steep slope on the other

A cuesta is a hill or ridge with a gentle slope on one side, and a steep slope on the other. In geology the term is more specifically applied to a ridge where a harder sedimentary rock overlies a softer layer, the whole being tilted somewhat from the horizontal. This results in a long and gentle backslope called a dip slope that conforms with the dip of resistant strata, called caprock. Where erosion has exposed the frontslope of this, a steep slope or escarpment occurs. The resulting terrain may be called scarpland.

<span class="mw-page-title-main">Geology of the Capitol Reef area</span>

The exposed geology of the Capitol Reef area presents a record of mostly Mesozoic-aged sedimentation in an area of North America in and around Capitol Reef National Park, on the Colorado Plateau in southeastern Utah.

<span class="mw-page-title-main">Morrison Formation</span> Rock formation in the western United States

The Morrison Formation is a distinctive sequence of Upper Jurassic sedimentary rock found in the western United States which has been the most fertile source of dinosaur fossils in North America. It is composed of mudstone, sandstone, siltstone, and limestone and is light gray, greenish gray, or red. Most of the fossils occur in the green siltstone beds and lower sandstones, relics of the rivers and floodplains of the Jurassic period.

<span class="mw-page-title-main">Dip slope</span>

A dip slope is a topographic (geomorphic) surface which slopes in the same direction, and often by the same amount, as the true dip or apparent dip of the underlying strata. A dip slope consists of the upper surface of a resistant layer of rock, often called caprock, that is commonly only slightly lowered and reduced in steepness by erosion. Dip slopes form the backslopes of cuestas, homoclinal ridges, hogbacks, and flatirons. The frontslopes of such ridges consist of either an escarpment, a steep slope, or perhaps even a line of cliffs. Generally, cuestas and homoclinal ridges are asymmetrical in that their dip slopes are less steep than their escarpments. In the case of hogbacks and flatirons, the dip of the rocks is so steep that their dip slope approaches the escarpment in their steepness.

<span class="mw-page-title-main">Denver Basin</span> Geologic structural basin in the U.S.

The Denver Basin, variously referred to as the Julesburg Basin, Denver-Julesburg Basin, or the D-J Basin, is a geologic structural basin centered in eastern Colorado in the United States, but extending into southeast Wyoming, western Nebraska, and western Kansas. It underlies the Denver-Aurora Metropolitan Area on the eastern side of the Rocky Mountains.

Hogback may refer to:

<span class="mw-page-title-main">Dakota Hogback</span>

The Dakota Hogback is a long hogback ridge at the eastern fringe of the Rocky Mountains that extends north-south from southern Wyoming through Colorado and into northern New Mexico in the United States. The ridge is prominently visible as the first line of foothills along the edge of the Great Plains. It is generally faulted along its western side, and varies in height, with gaps in numerous locations where rivers exit the mountains. The ridge takes its name from the Dakota Formation, a formation with resistant sandstone beds that cap the ridge. The hogback was formed during the Laramide orogeny, approximately 50 million years ago, when the modern Rockies were created. The general uplift to the west created long faulting in the North American Plate, resulting in the creation of the hogback.

<span class="mw-page-title-main">Fountain Formation</span>

The Fountain Formation is a Pennsylvanian bedrock unit consisting primarily of conglomerate, sandstone, or arkose, in the states of Colorado and Wyoming in the United States, along the east side of the Front Range of the Rocky Mountains, and along the west edge of the Denver Basin.

<span class="mw-page-title-main">Homocline</span> Geological structure in which rock strata dip uniformly in a single direction

In structural geology, a homocline or homoclinal structure, is a geological structure in which the layers of a sequence of rock strata, either sedimentary or igneous, dip uniformly in a single direction having the same general inclination in terms of direction and angle. A homocline can be associated with either one limb of a fold, the edges of a dome, the coast-ward tilted strata underlying a coastal plain, slice of thrust fault, or a tilted fault block. When the homoclinal strata consists of alternating layers of rock that vary hardness and resistance to erosion, their erosion produces either cuestas, homoclinal ridges, or hogbacks depending on the angle of dip of the strata. On a topographic map, the landfroms associated with homoclines exhibit nearly parallel elevation contour lines that show a steady change in elevation in a given direction. In the subsurface, they characterize by parallel structural contour lines.

<span class="mw-page-title-main">Homoclinal ridge</span> Ridge with a moderate sloping backslope and steeper frontslope

A homoclinal ridge or strike ridge is a hill or ridge with a moderate, generally between 10° and 30°, sloping backslope. Its backslope is a dip slope, that conforms with the dip of a resistant stratum or strata, called caprock. On the other side of the other slope, which is its frontslope, of a homoclinal ridge is a steeper or even cliff-like frontslope (escarpment) that is formed by the outcrop of the caprock. The escarpment cuts through the dipping strata that comprises the homoclinal ridge.

<span class="mw-page-title-main">Dinosaur Ridge</span>

Dinosaur Ridge is a segment of the Dakota Hogback in the Morrison Fossil Area National Natural Landmark located in Jefferson County, Colorado, near the town of Morrison and just west of Denver.

<span class="mw-page-title-main">Flatiron (geomorphology)</span> Steeply sloping triangular landform

Traditionally in geomorphology, a flatiron is a steeply sloping triangular landform created by the differential erosion of a steeply dipping, erosion-resistant layer of rock overlying softer strata. Flatirons have wide bases that form the base of a steep, triangular facet that narrows upward into a point at its summit. The dissection of a hogback by regularly spaced streams often results in the formation of a series of flatirons along the strike of the rock layer that formed the hogback. As noted in some, but not all definitions, a number of flatirons are perched upon the slope of a larger mountain with the rock layer forming the flatiron inclined in the same direction as, but often at a steeper angle than the associated mountain slope. The name flatiron refers to their resemblance to an upended, household flatiron.

A fin is a geological formation that is a narrow, residual wall of hard sedimentary rock that remains standing after surrounding rock has been eroded away along parallel joints or fractures. Fins are formed when a narrow butte or plateau develops many vertical, parallel cracks. There are two main modes of following erosion. The first is when water flows along joints and fractures and opens them wider and wider, eventually causing erosion. The second is where the rock type (stratum) is harder and more erosion resistant than neighboring rocks, causing the weaker rock to fall away.

References

  1. 1 2 Huggett, JR (2011) Fundamentals of Geomorphology, 3rd ed., Routledge, New York. 516 pp. ISBN   978-0415567756
  2. Cotton, CA (1952) Geomorphology An Introduction to the Study of Landforms, 6th ed. John Wiley and Sons, New York. 505 pp.
  3. 1 2 3 Fairbridge, RW (1968) Hogback and Flatiron. In RW Fairbridge, ed., pp. 524-525, The Encyclopedia of Geomorphology (Encyclopedia of Earth Sciences, Volume III), Reinhold, New York, 1296 pp. ISBN   978-0879331795
  4. 1 2 Jackson, JA, J Mehl and K Neuendorf (2005) Glossary of Geology. American Geological Institute, Alexandria, Virginia. 800 pp. ISBN   0-922152-76-4
  5. 1 2 Thornbury, W. D., 1954, "Principles of Geomorphology New York, John Wiley & Sons, 618 pp.
  6. Lockley, M, and L. Marquardt (1995) “A Field Guide to Dinosaur Ridge Friends of Dinosaur Ridge and the University of Colorado at Denver Trackers Research Group.
  7. New Castle, Colorado. Living in New Castle. Retrieved: 2017-03-27.
  8. Colorado Mountain College. The Grand Hogback: Living life on the edge. Retrieved: 2017-03-27.
  9. Darton, NH (1909) Geology and water resources of the northern portion of the Black Hills and adjoining regions in South Dakota and Wyoming. Professional Paper no 65. United States Geological Survey, Reston, Virginia.
  10. Robinson, CS, WJ Mapel, and MH Bergendahl (1964) Stratigraphy and structure of the northern and western flanks of the Black Hills uplift, Wyoming, Montana, and South Dakota. Professional Paper no. 404. United States Geological Survey, Reston, Virginia.
  11. Cleland, HF (1916) Geology, Physical and Historical. American Book Company, New York, New York.