Hopper cooling

Last updated
Amanco 'Hired Man' engine The hopper is the open-topped iron vessel in the centre on top Amanco hit-and-miss engine(GDSF 2007).JPG
Amanco 'Hired Man' engine The hopper is the open-topped iron vessel in the centre on top

Hopper cooling is a simple form of water cooling used for small stationary engines. The defining feature of hopper cooling, amongst other water-cooled engines, is that there is no radiator. Cooling water is heated by the engine and evaporates from the surface of the hopper as steam. [2]



Internal combustion engines are rather inefficient and require cooling to dispose of the waste heat they generate when running. Water-cooled engines remove this heat from around the cylinder head by surrounding it with a water jacket.

In most familiar engines today, this water is circulated from the hot parts of the engine to a radiator, where it gives up its heat to the air.

In early and low powered engines with hopper cooling there is little circulation. Water is instead slowly boiled off, with the heat of vaporisation needed to boil the water coming from the engine heat. The loss of heat with this departing water vapour is enough to cool the engine. [3]

As the heat of vaporisation (energy needed to vaporise water) is much larger than the specific heat capacity (energy to raise the temperature of water by one degree), relatively little water is required to replace that lost by evaporation. The heat needed to boil water is equivalent to a 540 °C rise in temperature, or about 7 times that needed to raise the temperature of the water from ambient to boiling.

Specific heat capacitycP4.1813 J·g−1·K−1
Heat of vaporisation2260 J·g−1

A typical small engine would consume a few bucketfuls in a working day.

Although hopper cooling is inefficient, in terms of the amount of heat removed for the size of the water jacket, it does maintain the cylinder temperature at a low temperature. Provided that the hopper does not boil dry, the temperature cannot exceed the 100ºC atmospheric boiling point of water. This is both an advantage and a disadvantage: it maintains a low operating temperature, helping to preserve the fragile piston rings and exhaust valves of these early engines. However it also limits efficiency of operation, as the engine cannot run at a higher and more efficient operating temperature.

Large engines would use thermosyphon cooling. The hopper on the engine would be supplemented by a large drum of water above the engine. This would give some circulation between the two, but as there was no large surface area for heat transfer to the air, as with a radiator, the eventual cooling would still largely be by evaporation.


Wolseley WD engine, with finned hopper Wolseley Stationarmotor.jpg
Wolseley WD engine, with finned hopper

Hopper-cooled engines are usually single cylinder, and usually petrol engines rather than diesel. These are the engines that appeared in great numbers between the wars, driving a range of farm machinery by flat belt drives. These engines were used intermittently, and usually with an operator in attendance.

To avoid frost damage, the hopper could be drained easily through a large brass tap. [5] This would be done regularly, sometimes after every use, to avoid rust inside the hopper. As the cooling water evaporated continuously when running, no anti-freeze or anti-corrosion additives were used.


Hopper cooling has now largely disappeared. Lighter and more efficient engines were developed post-WWII, using air cooling. These were developed from motorcycle engines and made use of developments in aluminium casting to make thin-walled cylinder blocks with cast-in cooling fins. These are simpler in operation and do not require water, level checking or anti-freeze.

A handful of engines, now largely diesels, retained hopper cooling into the 21st century. [6] These were simply constructed engines, still using cast-iron blocks to provide more strength from a crude foundry, as a diesel engine required more strength than unsophisticated aluminium castings could provide. Single cylinder horizontal diesel engines were built in India and China and were briefly imported to the West around 2000, but were outlawed by emission control regulations. [7]

Hot-air engines

Large hot air engines, such as the Rider-Ericsson, also used hopper cooling.

Evaporative cooling

Evaporative or steam cooling was used experimentally for high-powered aircraft engines in the 1930s, notably the Rolls-Royce Goshawk. [8] Although both systems rely on evaporation, they are quite different. Aircraft evaporative cooling, like radiator systems, used a pumped closed-loop for the coolant, without loss. The coolant vapour was captured in radiators, or in this case condensers and re-circulated.

Related Research Articles

Steam engine Heat engine that performs mechanical work using steam as its working fluid

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and flywheel, into rotational force for work. The term "steam engine" is generally applied only to reciprocating engines as just described, not to the steam turbine. Steam engines are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.


Radiators are heat exchangers used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics.

Petrol engine Internal combustion engine designed to run on gasoline

A petrol engine or gasoline engine is an internal combustion engine with spark-ignition, designed to run on petrol (gasoline) and similar volatile fuels.

Intercooler mechanical device used to cool a gas after compression

An intercooler is a mechanical device used to cool a gas after compression. Compressing a gas increases its internal energy which in turn raises its temperature. An intercooler typically takes the form of a heat exchanger that removes waste heat in a gas compressor. Intercoolers have a variety of applications, and can be found, for instance, in air compressors, air conditioners, refrigeration, gas turbines, and automotive engines. They are widely known as an air-to-air or air-to-liquid cooler for forced induction internal combustion engines, used to improve volumetric efficiency. This is accomplished by increasing intake air density through nearly constant pressure cooling.

Water cooling Method of heat removal from components and industrial equipment

Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non-toxic; however, it can contain impurities and cause corrosion.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

Internal combustion engine cooling uses either air or liquid to remove the waste heat from an internal combustion engine. For small or special purpose engines, cooling using air from the atmosphere makes for a lightweight and relatively simple system. Watercraft can use water directly from the surrounding environment to cool their engines. For water-cooled engines on aircraft and surface vehicles, waste heat is transferred from a closed loop of water pumped through the engine to the surrounding atmosphere by a radiator.

A coolant is a substance, typically liquid or gas, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

Rolls-Royce Kestrel

The Kestrel or type F is a 21 litre 700 horsepower (520 kW) class V-12 aircraft engine from Rolls-Royce, their first cast-block engine and the pattern for most of their future piston-engine designs. Used during the interwar period, it provided excellent service on a number of British fighters and bombers of the era, such as the Hawker Fury and Hawker Hart family, and the Handley Page Heyford. The engine also sold to international air forces, and it was even used to power prototypes of German military aircraft types that were later used during the Battle of Britain. Several Kestrel engines remain airworthy today.

Thermosiphon Method of heat exchange in which convection drives pumpless circulation

Thermosiphon is a method of passive heat exchange, based on natural convection, which circulates a fluid without the necessity of a mechanical pump. Thermosiphoning is used for circulation of liquids and volatile gases in heating and cooling applications such as heat pumps, water heaters, boilers and furnaces. Thermosiphoning also occurs across air temperature gradients such as those utilized in a wood fire chimney or solar chimney.

Rolls-Royce Goshawk 1930s British piston aircraft engine

The Rolls-Royce Goshawk was a development of the Rolls-Royce Kestrel that used evaporative or steam cooling. In line with Rolls-Royce convention of naming piston engines after birds of prey, it was named after the goshawk.

Hot-bulb engine Internal combustion engine

The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

Heater core

A heater core is a radiator-like device used in heating the cabin of a vehicle. Hot coolant from the vehicle's engine is passed through a winding tube of the core, a heat exchanger between coolant and cabin air. Fins attached to the core tubes serve to increase surface area for heat transfer to air that is forced past them by a fan, thereby heating the passenger compartment.

An evaporator is a device used in a process to turn the liquid form of a chemical substance, such as water, into its gaseous form - vapor. The liquid is evaporated, or vaporized, into a gas form of the targeted substance in that process.

Wax thermostatic element

The wax thermostatic element was invented in 1934 by Sergius Vernet (1899–1968). Its principal application is in automotive thermostats used in the engine cooling system. The first applications in the plumbing and heating industries were in Sweden (1970) and in Switzerland (1971).

Oil cooling is the use of engine oil as a coolant, typically to remove surplus heat from an internal combustion engine. The hot engine transfers heat to the oil which then usually passes through a heat-exchanger, typically a type of radiator known as an oil cooler. The cooled oil flows back into the hot object to cool it continuously.

Radiator (engine cooling)

Radiators are heat exchangers used for cooling internal combustion engines, mainly in automobiles but also in piston-engined aircraft, railway locomotives, motorcycles, stationary generating plant or any similar use of such an engine.

Meredith effect

The Meredith effect is a phenomenon whereby the aerodynamic drag produced by a cooling radiator may be offset by careful design of the cooling duct such that useful thrust is produced by the expansion of the hot air in the duct. The effect was discovered in the 1930s and became more important as the speeds of piston-engined aircraft increased over the next decade.

Evaporator (marine)

An evaporator, distiller or distilling apparatus is a piece of ship's equipment used to produce fresh drinking water from sea water by distillation. As fresh water is bulky, may spoil in storage, and is an essential supply for any long voyage, the ability to produce more fresh water in mid-ocean is important for any ship.

A heat transfer fluid is a gas or liquid that takes part in heat transfer by serving as an intermediary in cooling on one side of a process, transporting and storing thermal energy, and heating on another side of a process. Heat transfer fluids are used in countless applications and industrial processes requiring heating or cooling, typically in a closed circuit and in continuous cycles. Cooling water for instance cools an engine, while heating water in a hydronic heating system heats the radiator in a room. Water is the most common heat transfer fluid because of its economy, high heat capacity and favorable transport properties. However, the useful temperature range is restricted by freezing below 0 °C and boiling at elevated temperatures depending on the system pressure. Antifreeze additives can alleviate the freezing problem to some extent. However, many other heat transfer fluids have been developed and used in a huge variety of applications. For higher temperatures, oil or synthetic hydrocarbon or silicone based fluids offer lower vapor pressure. Molten salts and molten metals can be used for transferring and storing heat at temperatures above 300 to 400 °C where organic fluids start to decompose. Gases such as water vapor, nitrogen, argon, helium and hydrogen have been used as heat transfer fluids where liquids are not suitable. For gases the pressure typically needs to be elevated to facilitate higher flow rates with low pumping power.


  1. "Amanco 2 1/4hp 'Hired Man' engine". StationaryEngine.org.
  2. "Engine Cooling Systems". Utterpower.
  3. "Jargon Page". Cool Spring Power Museum.
  4. "Wolseley WD engine". StationaryEngine.org.
  5. "1948 Lister A engine". StationaryEngine.org.
  6. "Fotogalerie Stationärmotor Deutz". Lanz-Bulldog.
  7. "Hopper cooling". MicroCogen.info.
  8. Rubbra, A.A. (1990). Rolls-Royce Piston Aero Engines - A Designer Remembers. Rolls-Royce Heritage Trust. ISBN   1-872922-00-7. Historical Series Nº 16.