Surface condenser

Last updated
Surface condenser with end plate extended to reveal tube banks Surface condenser Anadrian MMM n01.jpg
Surface condenser with end plate extended to reveal tube banks

A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. [1] [2] [3] These condensers are heat exchangers which convert steam from its gaseous to its liquid state at a pressure below atmospheric pressure. Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however, significantly more expensive and cannot achieve as low a steam turbine exhaust pressure (and temperature) as a water-cooled surface condenser.

Contents

Surface condensers are also used in applications and industries other than the condensing of steam turbine exhaust in power plants.

Purpose

In thermal power plants, the purpose of a surface condenser is to condense the exhaust steam from a steam turbine to obtain maximum efficiency, and also to convert the turbine exhaust steam into pure water (referred to as steam condensate) so that it may be reused in the steam generator or boiler as boiler feed water.

The steam turbine itself is a device to convert the heat in steam to mechanical power. The difference between the heat of steam per unit mass at the inlet to the turbine and the heat of steam per unit mass at the outlet from the turbine represents the heat which is converted to mechanical power. Therefore, the more the conversion of heat per pound or kilogram of steam to mechanical power in the turbine, the better is its efficiency. By condensing the exhaust steam of a turbine at a pressure below atmospheric pressure, the steam pressure drop between the inlet and exhaust of the turbine is increased, which increases the amount of heat available for conversion to mechanical power. Most of the heat liberated due to condensation of the exhaust steam is carried away by the cooling medium (water or air) used by the surface condenser.

Diagram of water-cooled surface condenser

Diagram of a typical water-cooled surface condenser Surface Condenser.png
Diagram of a typical water-cooled surface condenser

The adjacent diagram depicts a typical water-cooled surface condenser as used in power stations to condense the exhaust steam from a steam turbine driving an electrical generator as well in other applications. [2] [3] [4] [5] There are many fabrication design variations depending on the manufacturer, the size of the steam turbine, and other site-specific conditions.

Shell

The shell is the condenser's outermost body and contains the heat exchanger tubes. The shell is fabricated from carbon steel plates and is stiffened as needed to provide rigidity for the shell. When required by the selected design, intermediate plates are installed to serve as baffle plates that provide the desired flow path of the condensing steam. The plates also provide support that help prevent sagging of long tube lengths.

At the bottom of the shell, where the condensate collects, an outlet is installed. In some designs, a sump (often referred to as the hotwell) is provided. Condensate is pumped from the outlet or the hotwell for reuse as boiler feedwater.

For most water-cooled surface condensers, the shell is under [partial] vacuum during normal operating conditions.

Vacuum system

Diagram of a typical modern injector or ejector. For a steam ejector, the motive fluid is steam. Ejector or Injector.svg
Diagram of a typical modern injector or ejector. For a steam ejector, the motive fluid is steam.

For water-cooled surface condensers, the shell's internal vacuum is most commonly supplied by and maintained by an external steam jet ejector system. Such an ejector system uses steam as the motive fluid to remove any non-condensible gases that may be present in the surface condenser. The Venturi effect, which is a particular case of Bernoulli's principle, applies to the operation of steam jet ejectors.

Motor driven mechanical vacuum pumps, such as the liquid ring type, are also popular for this service.

Tube sheets

At each end of the shell, a sheet of sufficient thickness usually made of stainless steel is provided, with holes for the tubes to be inserted and rolled. The inlet end of each tube is also bellmouthed for streamlined entry of water. This is to avoid eddies at the inlet of each tube giving rise to erosion, and to reduce flow friction. Some makers also recommend plastic inserts at the entry of tubes to avoid eddies eroding the inlet end. In smaller units some manufacturers use ferrules to seal the tube ends instead of rolling. To take care of length wise expansion of tubes some designs have expansion joint between the shell and the tube sheet allowing the latter to move longitudinally. In smaller units some sag is given to the tubes to take care of tube expansion with both end water boxes fixed rigidly to the shell.

Tubes

Generally the tubes are made of stainless steel, copper alloys such as brass or bronze, cupro nickel, or titanium depending on several selection criteria. The use of copper bearing alloys such as brass or cupro nickel is rare in new plants, due to environmental concerns of toxic copper alloys. Also depending on the steam cycle water treatment for the boiler, it may be desirable to avoid tube materials containing copper. Titanium condenser tubes are usually the best technical choice, however the use of titanium condenser tubes has been virtually eliminated by the sharp increases in the costs for this material. The tube lengths range to about 85 ft (26 m) for modern power plants, depending on the size of the condenser. The size chosen is based on transportability from the manufacturers’ site and ease of erection at the installation site. The outer diameter of condenser tubes typically ranges from 3/4 inch to 1-1/4 inch, based on condenser cooling water friction considerations and overall condenser size.

Waterboxes

The tube sheet at each end with tube ends rolled, for each end of the condenser is closed by a fabricated box cover known as a waterbox, with flanged connection to the tube sheet or condenser shell. The waterbox is usually provided with man holes on hinged covers to allow inspection and cleaning.

These waterboxes on inlet side will also have flanged connections for cooling water inlet butterfly valves, small vent pipe with hand valve for air venting at higher level, and hand-operated drain valve at bottom to drain the waterbox for maintenance. Similarly on the outlet waterbox the cooling water connection will have large flanges, butterfly valves, vent connection also at higher level and drain connections at lower level. Similarly thermometer pockets are located at inlet and outlet pipes for local measurements of cooling water temperature.

In smaller units, some manufacturers make the condenser shell as well as waterboxes of cast iron.

Corrosion

On the cooling water side of the condenser:

The tubes, the tube sheets and the water boxes may be made up of materials having different compositions and are always in contact with circulating water. This water, depending on its chemical composition, will act as an electrolyte between the metallic composition of tubes and water boxes. This will give rise to electrolytic corrosion which will start from more anodic materials first.

Sea water based condensers, in particular when sea water has added chemical pollutants, have the worst corrosion characteristics. River water with pollutants are also undesirable for condenser cooling water.

The corrosive effect of sea or river water has to be tolerated and remedial methods have to be adopted. One method is the use of sodium hypochlorite, or chlorine, to ensure there is no marine growth on the pipes or the tubes. This practice must be strictly regulated to make sure the circulating water returning to the sea or river source is not affected.

On the steam (shell) side of the condenser:

The concentration of undissolved gases is high over air zone tubes. Therefore, these tubes are exposed to higher corrosion rates. Some times these tubes are affected by stress corrosion cracking, if original stress is not fully relieved during manufacture. To overcome these effects of corrosion some manufacturers provide higher corrosive resistant tubes in this area.

Effects of corrosion

As the tube ends get corroded there is the possibility of cooling water leakage to the steam side contaminating the condensed steam or condensate, which is harmful to steam generators. The other parts of water boxes may also get affected in the long run requiring repairs or replacements involving long duration shut-downs.

Protection from corrosion

Cathodic protection is typically employed to overcome this problem. Sacrificial anodes of zinc (being cheapest) plates are mounted at suitable places inside the water boxes. These zinc plates will get corroded first being in the lowest range of anodes. Hence these zinc anodes require periodic inspection and replacement. This involves comparatively less down time. The water boxes made of steel plates are also protected inside by epoxy paint.

Effects of tube side fouling

As one might expect, with millions of gallons of circulating water flowing through the condenser tubing from seawater or fresh water, anything that is contained within the water flowing through the tubes can ultimately end up on either the condenser tubesheet (discussed previously) or within the tubing itself. Tube-side fouling for surface condensers falls into five main categories; particulate fouling like silt and sediment, biofouling like slime and biofilms, scaling and crystallization such as calcium carbonate, macrofouling which can include anything from zebra mussels that can grow on the tubesheet, to wood or other debris that blocks the tubing, and finally, corrosion products (discussed previously).

Depending on the extent of the fouling, the impact can be quite severe on the condenser's ability to condense the exhaust steam coming from the turbine. As fouling builds up within the tubing, an insulating effect is created and the heat-transfer characteristics of the tubes are diminished, often requiring the turbine to be slowed to a point where the condenser can handle the exhaust steam produced. Typically, this can be quite costly to power plants in the form of reduced output, increase fuel consumption and increased CO2 emissions. This "derating" of the turbine to accommodate the condenser's fouled or blocked tubing is an indication that the plant needs to clean the tubing in order to return to the turbine's nameplate capacity. A variety of methods for cleaning are available, including online and offline options, depending on the plant's site-specific conditions.

Other applications of surface condensers

Testing

National and international test codes are used to standardize the procedures and definitions used in testing large condensers. In the U.S., ASME publishes several performance test codes on condensers and heat exchangers. These include ASME PTC 12.2-2010, Steam Surface Condensers, and PTC 30.1-2007, Air cooled Steam Condensers.

See also

Related Research Articles

<span class="mw-page-title-main">Steam engine</span> Engine that uses steam to perform mechanical work

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Heat exchanger</span> Equipment used to transfer heat between fluids

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Rankine cycle</span> Model that is used to predict the performance of steam turbine systems

The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Injector</span> Type of pump using high pressure fluid to entrain a lower pressure fluid

An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.

<span class="mw-page-title-main">Shell-and-tube heat exchanger</span> Class of heat exchanger designs

A shell-and-tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this type of heat exchanger consists of a shell with a bundle of tubes inside it. One fluid runs through the tubes, and another fluid flows over the tubes to transfer heat between the two fluids. The set of tubes is called a tube bundle, and may be composed of several types of tubes: plain, longitudinally finned, etc.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources is converted to electrical energy. The heat from the source is converted into mechanical energy using a thermodynamic power cycle. The most common cycle involves a working fluid heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines, skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.

<span class="mw-page-title-main">Condensing steam locomotive</span> Type of locomotive designed to recover exhaust steam

A condensing steam locomotive is a type of locomotive designed to recover exhaust steam, either in order to improve range between taking on boiler water, or to reduce emission of steam inside enclosed spaces. The apparatus takes the exhaust steam that would normally be used to produce a draft for the firebox, and routes it through a heat exchanger, into the boiler water tanks. Installations vary depending on the purpose, design and the type of locomotive to which it is fitted. It differs from the usual closed cycle condensing steam engine, in that the function of the condenser is primarily either to recover water, or to avoid excessive emissions to the atmosphere, rather than maintaining a vacuum to improve both efficiency and power.

<span class="mw-page-title-main">Steam–electric power station</span> Power station whose electric generator is steam-driven

A steam–electric power station is a power station in which the electric generator is steam-driven: water is heated, evaporates, and spins a steam turbine which drives an electric generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam–electric power plants is due to the different fuel sources.

<span class="mw-page-title-main">Marine heat exchanger</span>

Marine heat exchangers are no different than non-marine heat exchangers except for the simple fact that they are found aboard ships. Heat exchangers can be used for a wide variety of uses. As the name implies, these can be used for heating as well as cooling. The two primary types of marine heat exchangers used aboard vessels in the maritime industry are plate, and shell and tube. Maintenance for heat exchangers prevents fouling and galvanic corrosion from dissimilar metals.

<span class="mw-page-title-main">Evaporator</span> Machine transforming a liquid into a gas

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment causing it to boil at a lower temperature compared to normal atmospheric boiling.

A condensate polisher is a device used to filter water condensed from steam as part of the steam cycle, for example in a conventional or nuclear power plant. It is frequently filled with tiny polymer resin beads which are used to remove or exchange ions so that the purity of the condensate is maintained at or near that of distilled water.

<span class="mw-page-title-main">Taprogge</span>

Taprogge GmbH is a medium-sized company based in Wetter, Germany. The company is named after founding brothers Ludwig and Josef Taprogge. Founded in 1953, the company is known for its tube cleaning systems for steam turbine condensers, heat exchangers and debris filters for water-cooled shell and tube heat exchangers and condensers.

<span class="mw-page-title-main">Boiler feedwater</span> Water supplied to a boiler

Boiler feedwater is the water which is supplied to a boiler. The feed water is put into the steam drum from a feed pump. In the steam drum the feed water is then turned into steam from the heat. After the steam is used, it is then dumped to the main condenser. From the condenser, it is then pumped to the deaerated feed tank. From this tank it then goes back to the steam drum to complete its cycle. The feedwater is never open to the atmosphere. This cycle is known as a closed system or Rankine cycle.

<span class="mw-page-title-main">Condenser (heat transfer)</span> System for condensing gas into liquid by cooling

In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems. Condensers can be made according to numerous designs and come in many sizes ranging from rather small (hand-held) to very large. For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air.

A deaerating feed tank (DFT), often found in steam plants that propel ships, is located after the main condensate pump and before the main feed booster pump.

<span class="mw-page-title-main">South African Class 25 4-8-4</span> 1953 design of condensing steam locomotive

The South African Railways Class 25 4-8-4 of 1953 was a condensing steam locomotive.

<span class="mw-page-title-main">Evaporator (marine)</span> Fresh water production device

An evaporator, distiller or distilling apparatus is a piece of ship's equipment used to produce fresh drinking water from sea water by distillation. As fresh water is bulky, may spoil in storage, and is an essential supply for any long voyage, the ability to produce more fresh water in mid-ocean is important for any ship.

Steam and water analysis system (SWAS) is a system dedicated to the analysis of steam or water. In power stations, it is usually used to analyze boiler steam and water to ensure the water used to generate electricity is clean from impurities which can cause corrosion to any metallic surface, such as in boiler and turbine.

References

  1. Robert Thurston Kent (Editor in Chief) (1936). Kents' Mechanical Engineers' Handbook (Eleventh edition (Two volumes) ed.). John Wiley & Sons (Wiley Engineering Handbook Series).{{cite book}}: |author= has generic name (help)
  2. 1 2 Babcock & Wilcox Co. (2005). Steam: Its Generation and Use (41st ed.). ISBN   0-9634570-0-4.
  3. 1 2 Thomas C. Elliott, Kao Chen, Robert Swanekamp (coauthors) (1997). Standard Handbook of Powerplant Engineering (2nd ed.). McGraw-Hill Professional. ISBN   0-07-019435-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Air Pollution Control Orientation Course from website of the Air Pollution Training Institute
  5. Energy savings in steam systems Archived 2007-09-27 at the Wayback Machine Figure 3a, Layout of surface condenser (scroll to page 11 of 34 pdf pages)