Fire-tube boiler

Last updated
Sectioned fire-tube boiler from a DRB Class 50 locomotive. Hot flue gases created in the firebox (on the left) pass through the tubes in the centre cylindrical section, which is filled with water, to the smokebox and out of the chimney (stack) at far right. The steam collects along the top of the boiler and in the steam dome roughly halfway along the top, where it then flows into the large pipe seen running forward. It is then divided into each side and runs downward in the steam chest (at the rear of the smoke box), where it is then admitted into the cylinders by means of valves. Aufgeschnittener Kessel.jpg
Sectioned fire-tube boiler from a DRB Class 50 locomotive. Hot flue gases created in the firebox (on the left) pass through the tubes in the centre cylindrical section, which is filled with water, to the smokebox and out of the chimney (stack) at far right. The steam collects along the top of the boiler and in the steam dome roughly halfway along the top, where it then flows into the large pipe seen running forward. It is then divided into each side and runs downward in the steam chest (at the rear of the smoke box), where it is then admitted into the cylinders by means of valves.

A fire-tube boiler is a type of boiler invented in 1828 by Mark Seguin, [1] in which hot gases pass from a fire through one or more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.

Contents

The fire-tube boiler developed as the third of the four major historical types of boilers: low-pressure tank or "haystack" boilers, flued boilers with one or two large flues, fire-tube boilers with many small tubes, and high-pressure water-tube boilers. Their advantage over flued boilers with a single large flue is that the many small tubes offer far greater heating surface area for the same overall boiler volume. The general construction is as a tank of water penetrated by tubes that carry the hot flue gases from the fire. The tank is usually cylindrical for the most part—being the strongest practical shape for a pressurized container—and this cylindrical tank may be either horizontal or vertical.

This type of boiler was used on virtually all steam locomotives in the horizontal "locomotive" form. This has a cylindrical barrel containing the fire tubes, but also has an extension at one end to house the "firebox". This firebox has an open base to provide a large grate area and often extends beyond the cylindrical barrel to form a rectangular or tapered enclosure. The horizontal fire-tube boiler is also typical of marine applications, using the Scotch boiler; thus, these boilers are commonly referred to as "scotch-marine" or "marine" type boilers. [2] Vertical boilers have also been built of the multiple fire-tube type, although these are comparatively rare; most vertical boilers were either flued, or with cross water-tubes.

Operation

Schematic diagram of a "locomotive" type fire-tube boiler Locomotive fire tube boiler schematic.png
Schematic diagram of a "locomotive" type fire-tube boiler

In the locomotive-type boiler, fuel is burnt in a firebox to produce hot combustion gases. The firebox is surrounded by a cooling jacket of water connected to the long, cylindrical boiler shell. The hot gases are directed along a series of fire tubes, or flues, that penetrate the boiler and heat the water thereby generating saturated ("wet") steam. The steam rises to the highest point of the boiler, the steam dome , where it is collected. The dome is the site of the regulator that controls the exit of steam from the boiler.

In the locomotive boiler, the saturated steam is very often passed into a superheater , back through the larger flues at the top of the boiler, to dry the steam and heat it to superheated steam. The superheated steam is directed to the steam engine's cylinders or very rarely to a turbine to produce mechanical work. Exhaust gases are fed out through a chimney, and may be used to pre-heat the feed water to increase the efficiency of the boiler.

Draught for firetube boilers, particularly in marine applications, is usually provided by a tall smokestack. In all steam locomotives since Stephenson's Rocket, additional draught is supplied by directing exhaust steam from the cylinders into the smokestack through a blastpipe, to provide a partial vacuum. Modern industrial boilers use fans to provide forced or induced draughting of the boiler.

Another major advance in the Rocket was large numbers of small-diameter firetubes (a multi-tubular boiler) instead of a single large flue. This greatly increased the surface area for heat transfer, allowing steam to be produced at a much higher rate. Without this, steam locomotives could never have developed effectively as powerful prime movers.

Types

For more details on the related ancestor type, see Flued boilers.

Cornish boiler

The earliest form of fire-tube boiler was Richard Trevithick's "high-pressure" Cornish boiler. This is a long horizontal cylinder with a single large flue containing the fire. The fire itself was on an iron grating placed across this flue, with a shallow ashpan beneath to collect the non-combustible residue. Although considered as low-pressure (perhaps 25 pounds per square inch (170 kPa)) today, the use of a cylindrical boiler shell permitted a higher pressure than the earlier "haystack" boilers of Newcomen's day. As the furnace relied on natural draught (air flow), a tall chimney was required at the far end of the flue to encourage a good supply of air (oxygen) to the fire.

For efficiency, the boiler was commonly encased beneath by a brick-built chamber. Flue gases were routed through this, outside the iron boiler shell, after passing through the fire-tube and so to a chimney that was now placed at the front face of the boiler.

Lancashire boiler in Germany Dampfkessel fur eine Stationardampfmaschine im Textilmuseum Bocholt.jpg
Lancashire boiler in Germany

Lancashire boiler

The Lancashire boiler is similar to the Cornish, but has two large flues containing the fires. It was the invention of William Fairbairn in 1844, from a theoretical consideration of the thermodynamics of more efficient boilers that led him to increase the furnace grate area relative to the volume of water.

Later developments added Galloway tubes (after their inventor, patented in 1848), [3] crosswise water tubes across the flue, thus increasing the heated surface area. As these are short tubes of large diameter and the boiler continues to use a relatively low pressure, this is still not considered to be a water-tube boiler. The tubes are tapered, simply to make their installation through the flue easier. [4]

Side-section of a Scotch marine boiler: the arrows show direction of flue gas flow; the combustion chamber is on the right, the smokebox on the left. Scotch marine boiler side section (Stokers Manual 1912).jpg
Side-section of a Scotch marine boiler: the arrows show direction of flue gas flow; the combustion chamber is on the right, the smokebox on the left.

Scotch marine boiler

The Scotch marine boiler differs dramatically from its predecessors in using a large number of small-diameter tubes. This gives a far greater heating surface area for the volume and weight. The furnace remains a single large-diameter tube with the many small tubes arranged above it. They are connected together through a combustion chamber – an enclosed volume contained entirely within the boiler shell – so that the flow of flue gas through the firetubes is from back to front. An enclosed smokebox covering the front of these tubes leads upwards to the chimney or funnel. Typical Scotch boilers had a pair of furnaces, larger ones had three. Above this size, such as for large steam ships, it was more usual to install multiple boilers. [5]

Locomotive boiler

A locomotive boiler has three main components: a double-walled firebox; a horizontal, cylindrical "boiler barrel" containing a large number of small flue-tubes; and a smokebox with chimney, for the exhaust gases. The boiler barrel contains larger flue-tubes to carry the superheater elements, where present. Forced draught is provided in the locomotive boiler by injecting exhausted steam back into the exhaust via a blast pipe in the smokebox.

Locomotive-type boilers are also used in traction engines, steam rollers, portable engines and some other steam road vehicles. The inherent strength of the boiler means it is used as the basis for the vehicle: all the other components, including the wheels, are mounted on brackets attached to the boiler. It is rare to find superheaters designed into this type of boiler, and they are generally much smaller (and simpler) than railway locomotive types.

The locomotive-type boiler is also a characteristic of the overtype steam wagon, the steam-powered fore-runner of the truck. In this case, however, heavy girder frames make up the load-bearing chassis of the vehicle, and the boiler is attached to this.

Taper boiler

Certain railway locomotive boilers are tapered from a larger diameter at the firebox end to a smaller diameter at the smokebox end. This reduces weight and improves water circulation. Many later Great Western Railway and London, Midland and Scottish Railway locomotives were designed or modified to take taper boilers.

Vertical fire-tube boiler

A vertical fire-tube boiler (VFT), colloquially known as the "vertical boiler", has a vertical cylindrical shell, containing several vertical flue tubes.

Horizontal return tubular boiler

Horizontal return tubular boilers from the Staatsbad Bad Steben GmbH Flammrohrrauchrohkessel.jpg
Horizontal return tubular boilers from the Staatsbad Bad Steben GmbH

Horizontal return tubular boiler (HRT) has a horizontal cylindrical shell, containing several horizontal flue tubes, with the fire located directly below the boiler's shell, usually within a brickwork setting

Admiralty-type direct tube boiler

Extensively used by Britain, before and in the early days of ironclads, the only protected place was below the waterline, sometimes under an armoured deck, so to fit below short decks, the tubes were not led back above the furnace but continued straight from it with keeping the combustion chamber in between the two. Hence the name, and considerably reduced diameter, compared to the ubiquitous Scotch or return tube boiler. It was not a great success and its use was being abandoned after the introduction of stronger side armouring – “the furnace crowns, being very near the water-level, are much more liable to over-heating. Further, on account of the length of the boiler, for an equal angle of inclination, the effect on the water-level is much greater. Finally, the unequal expansion of the various parts of the boiler is more pronounced, especially at the top and bottom, due to the increased ratio between the length and the diameter of the boiler; the local strains are also more severe on account of the comparatively feeble circulation in long and low boilers.” All these also resulted in a shorter life. Also, the same length of a combustion chamber was much less effective on a direct tube than on a return tube boiler, at least without baffling. [6] : 233-235

Immersion fired boiler

The immersion fired boiler is a single-pass fire-tube boiler that was developed by Sellers Engineering in the 1940s. It has only firetubes, functioning as a furnace and combustion chamber also, with multiple burner nozzles injecting premixed air and natural gas under pressure. It claims reduced thermal stresses, and lacks refractory brickwork completely due to its construction. [7]

Variations

Water tubes

Fire-tube boilers sometimes have water-tubes as well, to increase the heating surface. A Cornish boiler may have several water-tubes across the diameter of the flue (this is common in steam launches). A locomotive boiler with a wide firebox may have arch tubes or thermic syphons. As firebox technology developed, it was found that placing a baffle of firebricks (heat-resistant bricks) inside the firebox to direct the flow of hot flue gasses up into the top of the firebox before it flowed into the fire tubes increased efficiency by equalizing the heat between upper and lower fire tubes. To hold these in place, a metal bracket was used, but to prevent these brackets from burning and eroding away they were built as water tubes, with cool water from the bottom of the boiler moving upwards by convection as it heated, and carrying the heat away before the metal reached its failure temperature.

Another technique for increasing the heating surface is to include internal rifling inside the boiler tubes (also known as Serve tubes).

Not all shell boilers raise steam; some are designed specifically for heating pressurized water.

Reverse flame

In homage to the Lancashire design, modern shell boilers can come with a twin furnace design. A more recent development has been the reverse flame design where the burner fires into a blind furnace and the combustion gasses double back on themselves. This results in a more compact design and less pipework.

Package boiler

The term "package" boiler evolved in the early- to mid-20th century; it is used to describe residential heating boilers delivered to the installation site with all insulation, electrical panels, valves, gauges, and fuel burners already assembled by the manufacturer. Other delivery methods more closely resemble prior practice from the coal burning era, when other components were added on-site to either a pre-assembled pressure vessel, or to a "knock-down" boiler, where the pressure vessel is delivered as a set of castings to be assembled on-site. As a general rule, factory assembly is much more cost-effective and the packaged boiler is the preferred option for domestic use. Part-assembled deliveries are only used when necessary because of access limitations - e.g. when the only access to a basement installation site is down a narrow flight of stairs.

Kewanee Gas-Fired Packaged Fire-Tube Boiler from 1974 rated at 25 horsepower Kewanee Fire-Tube Package Boiler.jpg
Kewanee Gas-Fired Packaged Fire-Tube Boiler from 1974 rated at 25 horsepower

Safety considerations

Because the fire-flume boiler itself is the pressure vessel, it requires a number of safety features to prevent mechanical failure. Boiler steam explosions, which are a type of BLEVE (Boiling Liquid Expanding Vapor Explosion), can be devastating.

The fire-tube type boiler that was used in the Stanley Steamer automobile had several hundred tubes which were weaker than the outer shell of the boiler, making an explosion virtually impossible as the tubes would fail and leak long before the boiler exploded. In nearly 100 years since Stanley boilers were first produced, not one has ever exploded.[ citation needed ]

Economics and efficiencies

Excessive cycling

Each time a boiler cycles off and on, it can lose efficiency. When the fire starts combustion efficiency is usually lower until steady state conditions prevail. When the fire stops the warm chimney continues to draw additional air from the interior space until it cools.

Excessive cycling can be minimized

Common provisions are to provide a primary piping loop with pump(s) and a secondary piping loop with pump(s); and either a variable speed controlled pump to transfer water from the primary loop to the secondary loop, or a 3-way valve to divert water from the secondary loop to the primary loop. [9]

Fireside corrosion in non-condensing boilers

A minimum return water temperature of 130 °F (54 °C) to 150 °F (66 °C) to the boiler, depending on the specific design, is used to avoid condensing water vapor from the flue gas and dissolving CO
2
and SO
2
from the flue gasses forming carbonic and sulfuric acid, a corrosive fluid that damages the heat exchanger. [10]

Condensing boilers

Condensing boilers can be 2% or more efficient at lower firing rates by extracting the heat of vaporization from the water vapor in the flue gases. The efficiency increase depends on the fuel and the available energy to be recovered as a fraction of the total. Methane flue gas containing more available energy to recover than propane or fuel oil relatively less. The condensed water is corrosive due to dissolved carbon dioxide and sulfur oxides from the flue and must be neutralized before disposal. [10]

Condensing boilers have a higher seasonal efficiency, typically 84% to 92%, than non-condensing boilers typically 70% to 75%. The seasonal efficiency is an overall efficiency of the boiler over the entire heating season as opposed to the combustion efficiency which is the boiler's efficiency when actively fired, which excludes standing losses. The higher seasonal efficiency is partly because the lower boiler temperature used to condense the flue gas reduces standing losses during the off cycle. The lower boiler temperature precludes a condensing steam boiler and requires lower radiator temperatures in water systems.

The higher efficiency of operating in the condensing region isn't always available. To produce satisfactory domestic hot water frequently requires boiler water temperature higher than allows effective condensing on the heat exchanger surface. During cold weather the building's radiator surface area is usually not large enough to deliver enough heat at low boiler temperatures so the boiler's control raises the boiler temperature as required to meet heating demand. These two factors account for most of the variability of the efficiency gains experienced at different installations. [10]

Maintenance

An intensive schedule of maintenance is needed to keep a high pressure railway steam boiler in safe condition.

Daily inspection

The tube plates, the fusible plug and the heads of the firebox stays should be checked for leaks. The correct operation of the boiler fittings, especially the water gauges and water feed mechanisms, should be confirmed. Steam pressure should be raised to the level at which the safety valves lift and compared with the indication of the pressure gauge.

Washout

Cutaway of locomotive boiler. Note the narrow water spaces around the firebox and the "mudhole" for access to the crown sheet: these areas require special attention during washout Firebox cutaway.jpg
Cutaway of locomotive boiler. Note the narrow water spaces around the firebox and the "mudhole" for access to the crown sheet: these areas require special attention during washout

The working life of a locomotive boiler is considerably extended if it is spared from a constant cycle of cooling and heating. Historically, a locomotive would be kept “in steam” continuously for a period of about eight to ten days, and then allowed to cool sufficiently for a hot-water boiler washout. The schedule for express engines was based on mileage. [11] Today's preserved locomotives are not usually kept continuously in steam and the recommended washout interval is now fifteen to thirty days, but anything up to 180 days is possible. [12]

The process starts with a “blowdown” while some pressure remains in the boiler, then the draining away of all the boiler water through the “mudholes” at the base of the firebox and the removal of all the “washout plugs”. Scale is then jetted or scraped from the interior surfaces using a high-pressure water jet and rods of soft metal, such as copper. Areas particularly susceptible to scale buildup, such as the firebox crown and narrow water spaces around the firebox, are given special attention. The inside of the boiler is inspected by sighting through the plug holes, with a particular check paid to the integrity of the firetubes, firebox crown and stays and absence of pitting or cracking of the boiler plates. The gauge glass cocks and tubes and fusible plug should be cleared of scale; if the core of the fusible plug shows signs of calcination the item should be replaced. [13]

On reassembly care should be taken that the threaded plugs are replaced in their original holes: the tapers can vary as a result of rethreading. The mudhole door gaskets, if of asbestos, should be renewed but those made of lead may be reused; special instructions are in force for the disposal of these harmful materials. [12] Many boilers today make use of high temperature synthetics for the gaskets for both working environments and in preservation service as these materials are safer than the historic options. At large maintenance facilities the boiler would have been both washed and refilled with very hot water from an external supply to bring the locomotive back to service more quickly.

Periodic examination

Typically an annual inspection, this would require the removal and check of external fittings, such as the injectors, safety valves and pressure gauge. High-pressure copper pipework can suffer from work hardening in use and become dangerously brittle: it may be necessary to treat these by annealing before refitting. A hydraulic pressure test on the boiler and pipework may also be called for.

General overhaul

In the UK the specified maximum interval between full overhauls is ten years. To enable a full inspection the boiler is lifted from the locomotive frame and the lagging removed. All firetubes are removed for checking or replacement. All fittings are removed for overhaul. Before returning to use a qualified examiner will check the boiler's fitness for service and issue a safety certificate valid for ten years. [12]

Related Research Articles

<span class="mw-page-title-main">Steam engine</span> Engine that uses steam to perform mechanical work

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and crank, into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines." The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Boiler</span> Closed vessel in which fluid is heated

A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

<span class="mw-page-title-main">Furnace (central heating)</span> Device used for heating buildings

A furnace, referred to as a heater or boiler in British English, is an appliance used to generate heat for all or part of a building. Furnaces are mostly used as a major component of a central heating system. Furnaces are permanently installed to provide heat to an interior space through intermediary fluid movement, which may be air, steam, or hot water. Heating appliances that use steam or hot water as the fluid are normally referred to as a residential steam boilers or residential hot water boilers. The most common fuel source for modern furnaces in North America and much of Europe is natural gas; other common fuel sources include LPG, fuel oil, wood and in rare cases coal. In some areas electrical resistance heating is used, especially where the cost of electricity is low or the primary purpose is for air conditioning. Modern high-efficiency furnaces can be up to 98% efficient and operate without a chimney, with a typical gas furnace being about 80% efficient. Waste gas and heat are mechanically ventilated through either metal flue pipes or polyvinyl chloride (PVC) pipes that can be vented through the side or roof of the structure. Fuel efficiency in a gas furnace is measured in AFUE.

<span class="mw-page-title-main">Water-tube boiler</span> Type of furnace generating steam

A high pressure watertube boiler is a type of boiler in which water circulates in tubes heated externally by fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.

<span class="mw-page-title-main">Firebox (steam engine)</span> Part of a steam engine

In a steam engine, the firebox is the area where the fuel is burned, producing heat to boil the water in the boiler. Most are somewhat box-shaped, hence the name. The hot gases generated in the firebox are pulled through a rack of tubes running through the boiler.

A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, in some steam engines, and in processes such as steam reforming. There are three types of superheaters: radiant, convection, and separately fired. A superheater can vary in size from a few tens of feet to several hundred feet.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

A pulverized coal-fired boiler is an industrial or utility boiler that generates thermal energy by burning pulverized coal that is blown into the firebox.

<span class="mw-page-title-main">Boiler (power generation)</span> High pressure steam generator

A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.

<span class="mw-page-title-main">Scotch marine boiler</span> Design of steam boiler best known for its use on ships

A "Scotch" marine boiler is a design of steam boiler best known for its use on ships.

<span class="mw-page-title-main">Flued boiler</span> Type of boiler used to make steam

A shell or flued boiler is an early and relatively simple form of boiler used to make steam, usually for the purpose of driving a steam engine. The design marked a transitional stage in boiler development, between the early haystack boilers and the later multi-tube fire-tube boilers. A flued boiler is characterized by a large cylindrical boiler shell forming a tank of water, traversed by one or more large flues containing the furnace. These boilers appeared around the start of the 19th century and some forms remain in service today. Although mostly used for static steam plants, some were used in early steam vehicles, railway locomotives and ships.

<span class="mw-page-title-main">Vertical boiler with horizontal fire-tubes</span> Small vertical boiler

A vertical boiler with horizontal fire-tubes is a type of small vertical boiler, used to generate steam for small machinery. It is characterised by having many narrow fire-tubes, running horizontally.

<span class="mw-page-title-main">Yarrow boiler</span> Obsolete class of water-tube boilers widely used on ships

Yarrow boilers are an important class of high-pressure water-tube boilers. They were developed by Yarrow & Co. (London), Shipbuilders and Engineers and were widely used on ships, particularly warships.

Boilers for generating steam or hot water have been designed in countless shapes, sizes and configurations. An extensive terminology has evolved to describe their common features. This glossary provides definitions for these terms.

A Field-tube boiler is a form of water-tube boiler where the water tubes are single-ended. The tubes are closed at one end, and they contain a concentric inner tube. Flow is thus separated into the colder inner flow down the tube and the heated flow upwards through the outer sleeve. As Field tubes are thus dependent on thermo-syphon flow within the tube, they must thus always have some vertical height to encourage the flow. In most designs they are mounted near-vertically, to encourage this.

<span class="mw-page-title-main">Three-drum boiler</span> Compact furnace with two side water drums and one steam drum above

Three-drum boilers are a class of water-tube boiler used to generate steam, typically to power ships. They are compact and of high evaporative power, factors that encourage this use. Other boiler designs may be more efficient, although bulkier, and so the three-drum pattern was rare as a land-based stationary boiler.

<span class="mw-page-title-main">Vertical cross-tube boiler</span> Small, vertical water boiler

A cross-tube boiler was the most common form of small vertical boiler. They were widely used, in the age of steam, as a small donkey boiler, for the independent power of winches, steam cranes etc.

<span class="mw-page-title-main">Launch-type boiler</span>

A launch-type, gunboat or horizontal multitubular boiler is a form of small steam boiler. It consists of a cylindrical horizontal shell with a cylindrical furnace and fire-tubes within this.

<span class="mw-page-title-main">High-pressure steam locomotive</span>

A high-pressure steam locomotive is a steam locomotive with a boiler that operates at pressures well above what would be considered normal for other locomotives. Most locomotives operate with a steam pressure of 200 to 300 psi. In the later years of steam, boiler pressures were typically 200 to 250 psi. High-pressure locomotives can be considered to start at 350 psi (2.41 MPa), when special construction techniques become necessary, but some had boilers that operated at over 1,500 psi (10.34 MPa).

<span class="mw-page-title-main">Industrial furnace</span> Device used for providing heat in industrial applications

An industrial furnace, also known as a direct heater or a direct fired heater, is a device used to provide heat for an industrial process, typically higher than 400 degrees Celsius. They are used to provide heat for a process or can serve as reactor which provides heats of reaction. Furnace designs vary as to its function, heating duty, type of fuel and method of introducing combustion air. Heat is generated by an industrial furnace by mixing fuel with air or oxygen, or from electrical energy. The residual heat will exit the furnace as flue gas. These are designed as per international codes and standards the most common of which are ISO 13705 / American Petroleum Institute (API) Standard 560. Types of industrial furnaces include batch ovens, metallurgical furnaces, vacuum furnaces, and solar furnaces. Industrial furnaces are used in applications such as chemical reactions, cremation, oil refining, and glasswork.

References

  1. Nuttle, William (2020-12-30). "Making "The Rocket" Fly - Marc Seguin". Eiffel’s Paris - an Engineer’s Guide. Retrieved 2023-09-05.
  2. "Steam Generation in Canneries". U.S. Food & Drug Administration. Retrieved 25 March 2018.
  3. "Lancashire Boiler" (PDF). Museum of Science & Industry, Manchester. 2005. Archived from the original on 4 February 2009.{{cite web}}: CS1 maint: unfit URL (link)
  4. Harris, Karl N. (1 June 1967). Model Boilers and Boilermaking (New ed.). Kings Langley: Model & Allied Publications. ISBN   978-0852423776. OCLC   821813643. OL   8281488M.
  5. "SHONAS WRECKS". www.bevs.org.
  6. Bertin, Louis-Émile (2018) [1906]. Marine Boilers, Their Construction and Working: Dealing More Especially With Tubulous Boilers. Translated by Robertson, Leslie S. (Second ed.). New York: D. Van Nostrand Company. ISBN   978-0342330232. OCLC   30660489. OL   32577492M . Retrieved 28 June 2021 via Internet Archive.
  7. "Steam Boilers - SPS Immersion Fired Series". Archived from the original on 2011-07-15. Retrieved 2011-06-21.
  8. "PARR-Partnership for Advanced Residential Retrofit". Gas Technology Institute.
  9. "Taco Radiant Made Easy Application Guide – Setpoint Temperature: Variable Speed Injection Circulators – March 1, 2004" (PDF). taco-hvac.com. Archived from the original (PDF) on February 16, 2017. Retrieved November 17, 2016.
  10. 1 2 3 Tabrizi, Dominic (19 June 2012). "Boiler systems: Economics and efficiencies". BOILERS, CHILLERS. Consulting-Specifying Engineer . Chicago. ISSN   0892-5046. Archived from the original on 29 June 2020. Retrieved 28 June 2021. Fireside corrosion will occur when the flue gases are cooled below the dew point and come in contact with carbon steel pressure vessel. To avoid corrosion, the heating systems should be designed to operate in a way that ensures a minimum return water temperature of 150 F to the boiler. (Note: It is important to verify the return water temperature with the manufacturer's literature to avoid corrosion.) All heating components should be selected to operate with a minimum supply water temperature of 170 F, assuming 20 F differential temperature across supply and return water lines.
  11. Bell, A M (1957): Locomotives, seventh edition, Virtue and Company, London.
  12. 1 2 3 The Management Of Steam Locomotive Boilers (PDF). Vol. Railway Safety Publication 6 (Second ed.). Sudbury, Suffolk: Office of Rail and Road. 2007 [2005]. Archived (PDF) from the original on 6 February 2021. Retrieved 28 June 2021 via Association of Tourist & Heritage Rail Australia.
  13. "Cleaning and inspecting a locomotive" on YouTube