After about 1910, the Baker valve gear was the main competitor to Walschaerts valve gear for steam locomotives in the United States. Strictly speaking it was not a valve gear but a variable expansion mechanism adapted to the Walschaerts layout replacing the expansion link and sliding die block. The Baker arrangement used more pivot bearings or pin joints, but avoided the die slip inherent to the expansion link, with the aim of lessening wear and the need for service; it could also facilitate longer valve travel.
In the early 1900s there were many efforts to create a new valve gear to replace the by-then-standard Walschaerts valve gear. In the United States the Young, Southern, Caprotti and Franklin patterns were used on a few classes, but only the Baker pattern won more than limited acceptance.
The design originated in the A.D. Baker Company, of Swanton, Ohio; a builder of steam traction engines. The idea came from an employee called Gifford but was developed by the Baker company with the first patents being issued in 1903 [1] [2] and with patents issued through at least November, 1912. [3]
The Baker Locomotive Valve Gear was produced by the Pilliod Co. of Swanton, Ohio. Subsequent versions were produced up to the end of steam service. It was particularly popular on the Norfolk and Western Railway, and almost all later N&W engines used it. Other extensive users included the Chesapeake and Ohio Railway, the Nickel Plate Road, the New York Central Railroad and the Baltimore and Ohio Railroad. There was always debate about the advantages of Baker gear, the main criticism being the number of pin joints and possible lost motion. While popular with railroads on the east, western states tended to continue with the Walschaerts pattern. In Britain, Baker gear was popular amongst model engineers but in full-size practice the length of the yoke and the width of the assembly may have been difficult to accommodate within the restricted loading gauge.
Other locomotives to use Baker valve gear were the New Zealand Railways J class, Ja class, Jb class, some Ka class, and the South Australian Railways 620 class.
The Baker valve gear replaces the expansion link of the Walschaerts gear with an assembly of levers and links which produces the same effect of allowing continuous variation valve travel. The remainder of the gear is the same, so that the return crank and combination lever take the same form, although the proportions are usually modified. The Pilliod Co. sold the gear as a single assembly which was mounted on the frame in the location ordinarily occupied by the Walschaerts expansion link.
The Baker mechanism consisted of the following parts:
The parts were arranged so that when the yoke was centered, the connection of the main link to the bellcrank was in a line with the two pivots on the yoke. At this point, the back and forth motion of the lower end of the main link left the top relatively motionless as main link swung back and forth on the swing links.
In forward motion, the yoke was pushed forward, so that its upper pivot was in front of the bell crank-main link connection. Moving the eccentric arm back and forth lowered and raised the top of the main link. This motion was translated by the bellcrank into back and forth motion of the radius rod. The angle of the yoke controlled the relative motion, and therefore the cutoff; tilting the yoke backwards reversed the motion of the radius rod.
The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing gear. It is sometimes referred to as the "motion".
The Walschaerts valve gear is a type of valve gear used to regulate the flow of steam to the pistons in steam locomotives, invented by Belgian railway engineer Egide Walschaerts in 1844. The gear is sometimes named without the final "s", since it was incorrectly patented under that name. It was extensively used in steam locomotives from the late 19th century until the end of the steam era.
The Gresley conjugated valve gear is a valve gear for steam locomotives designed by Sir Nigel Gresley, chief mechanical engineer of the LNER, assisted by Harold Holcroft. It enables a three-cylinder locomotive to operate with only the two sets of valve gear for the outside cylinders, and derives the valve motion for the inside cylinder from them by means of levers. The gear is sometimes known as the Gresley-Holcroft gear, acknowledging Holcroft's major contributions to its development.
The Stephenson valve gear or Stephenson link or shifting link is a simple design of valve gear that was widely used throughout the world for various kinds of steam engines. It is named after Robert Stephenson but was invented by his employees.
A jackshaft is an intermediate shaft used to transfer power from a powered shaft such as the output shaft of an engine or motor to driven shafts such as the drive axles of a locomotive. As applied to railroad locomotives in the 19th and 20th centuries, jackshafts were typically in line with the drive axles of locomotives and connected to them by side rods. In general, each drive axle on a locomotive is free to move about one inch (2.5 cm) vertically relative to the frame, with the locomotive weight carried on springs. This means that if the engine, motor or transmission is rigidly attached to the locomotive frame, it cannot be rigidly connected to the axle. This problem can be solved by mounting the jackshaft on unsprung bearings and using side-rods or chain drives.
Under the Whyte notation for the classification of steam locomotives by wheel arrangement, a 4-6-2+2-6-4 is a Garratt or Union Garratt articulated locomotive using a pair of 4-6-2 engine units back to back, with the boiler and cab suspended between them. The 4-6-2 wheel arrangement of each engine unit has four leading wheels on two axles, usually in a leading bogie, six powered and coupled driving wheels on three axles, and two trailing wheels on one axle, usually in a trailing truck.
The Baguley valve gear is a type of steam engine valve gear invented by Ernest E. Baguley, the Chief Draughtsman of the W.G. Bagnall company of locomotive manufacturers and patented in 1893. It was used by Bagnall during Baguley's time there, then by his own company of Baguley Cars Ltd.
Southern valve gear was briefly popular on steam locomotives in the United States. It combines elements of the Walschaerts and Baker patterns.
Bagnall–Price valve gear is a type of steam engine valve gear developed at locomotive manufacturer W.G. Bagnall as an alternative to the more common Walschaerts valve gear and also to supersede the Baguley valve gear their designs had previously utilised. The gear was patented in 1903 by W.G. Bagnall and T. S. Price, the manager of the works.
The Bulleid chain-driven valve gear is a type of steam locomotive valve gear designed by Oliver Bulleid during the Second World War for use on his Pacific (4-6-2) designs. It was peculiar to the Southern Railway in Britain, and borrowed from motor-vehicle practice in an attempt to create a compact and efficient design with a minimum of service requirements.
Under the Whyte notation for the classification of steam locomotives by wheel arrangement, 2-6-2+2-6-2 is an articulated locomotive using a pair of 2-6-2 power units back to back, with the boiler and cab suspended between them. The 2-6-2 wheel arrangement has a single pair of leading wheels in a leading truck, followed by three coupled pairs of driving wheels and a pair of trailing wheels in a trailing truck.
Under the Whyte notation for the classification of steam locomotives by wheel arrangement, a 2-8-2+2-8-2 is an articulated locomotive using a pair of 2-8-2 power units back to back, with the boiler and cab suspended between them. The 2-8-2 wheel arrangement has a single pair of leading wheels in a leading truck, followed by four coupled pairs of driving wheels and a pair of trailing wheels in a trailing truck. Since the 2-8-2 type was known as Mikado, the corresponding Garratt and Modified Fairlie types were usually known as Double Mikado.
The Kuhn slide is part of a modified Walschaerts valve gear on steam locomotives and is named after its inventor, Michael Kuhn (1851–1903). The term is also used to refer to this particular type of Walschaerts valve gear system as a whole.
James Thompson Marshall was an English railway and mechanical engineer known for inventing the 'Marshall valve gear' for steam locomotive use. James Marshall began his engineering career at the Leeds-based Steam Plough Company, and later moved to the city's Boyne Engine Works.
The Holcroft valve gear was a type of conjugated valve gear designed and patented by Harold Holcroft and used on three-cylinder steam locomotives of the South Eastern & Chatham Railway (SECR). It bore many similarities to the Gresley conjugated valve gear, which it predated, as eventually used on all Gresley's three cylinder designs. It varied from the Gresley method of operation by using the combination lever assembly instead of the valve spindles to drive the middle cylinder of a three-cylinder design. This had operational advantages over Gresley's design, namely eliminating the problems of flexure, bush wear and the influence of heat in the valve spindles.
Musgrave's non-dead-centre engine was a stationary steam engine of unusual design, intended to solve the problem of stopping on dead centre. It was designed in 1887 to serve as a marine engine. It used a pair of linked cylinders to prevent the engine from stopping in a position where no turning force can be applied. At least one engine is known to survive.
An oscillating cylinder steam engine is a simple steam-engine design that requires no valve gear. Instead the cylinder rocks, or oscillates, as the crank moves the piston, pivoting in the mounting trunnion so that ports in the cylinder line up with ports in a fixed port face alternately to direct steam into or out of the cylinder.
The South African Railways Class GM 4-8-2+2-8-4 of 1938 was an articulated steam locomotive.
On a steam locomotive, the reversing gear is used to control the direction of travel of the locomotive. It also adjusts the cutoff of the steam locomotive.
The Hackworth valve gear is a design of valve gear used to regulate the flow of steam to the pistons in steam engines. It is a radial gear, with an actuating lever driven from the crank. The drive may be taken directly from the crank or indirectly via a return crank. The other end of the actuating lever is attached to a die block which slides in a slotted link. When the link is vertical, the engine is in mid-gear. Forward, reverse and cut-off adjustments are made by moving the link away from the vertical. The valve rod is pivoted to a point on the actuating lever.