Steam drum

Last updated

A steam drum is a standard feature of a water-tube boiler. It is a reservoir of water/steam at the top end of the water tubes. The drum stores the steam generated in the water tubes and acts as a phase-separator for the steam/water mixture. The difference in densities between hot and cold water helps in the accumulation of the "hotter"-water/and saturated-steam into the steam-drum.

Contents

Schematic diagram of a marine-type water tube boiler-see the steam drum at the top and feed drum Water tube boiler-en.svg
Schematic diagram of a marine-type water tube boiler-see the steam drum at the top and feed drum

History

Initially the boilers were designed with 4 drums and 3 drums like the Stirling boiler. The single drum at the bottom and three drums on the top were connected through a network of tubes which were welded to the drums above and the single drum below. The rational demand of steam in terms of capacity, pressure and temperature resulted in bi drums and single drum boilers.

Working

The separated steam is drawn out from the top section of the drum and distributed for process. Further heating of the saturated steam will make superheated steam normally used to drive a steam turbine. Saturated steam is drawn off the top of the drum and re-enters the furnace in through a superheater. The steam and water mixture enters the steam drum through riser tubes, drum internals consisting of demister separate the water droplets from the steam producing dry steam. The saturated water at the bottom of the steam drum flows down through the downcomer pipe, normally unheated, to headers and water drum. Its accessories include a safety valve, water-level indicator and level controller. Feed-water of boiler is also fed to the steam drum through a feed pipe extending inside the drum, along the length of the steam drum.

A steam drum is used without or in the company of a mud-drum/feed water drum which is located at a lower level. A boiler with both steam drum and mud/water drum is called a bi-drum boiler and a boiler with only a steam drum is called a mono-drum boiler. The bi-drum boiler construction is normally intended for low pressure-rating boiler while the mono-drum is mostly designed for higher pressure-rating. [1]

On steam locomotives the steam drum is also called a steam dome.

Types of Steam Drums

Boiler steam drum Drax power station boiler.jpg
Boiler steam drum
  1. Three drum/four drum boilers – are the veterans of the normal day boilers, although they are still used in some industries.
  2. Bi drum boiler – are used for power generation and steam generation both. For power generation they are used now seldom and are replaced by single drum boilers as the bi drum boilers are non-reheat units. So, due to the high heat rate of the plant a single drum boiler or a once through boiler is more feasible. In process steam generation the bi drum boilers are used commonly as they can adapt to the high load fluctuation and respond to load changes.
  3. Single drum boiler – are used mainly for the power plants for power generation. The pressure limit for single drum boilers is higher than that of the bi drum boilers as the stress concentration is reduced to a greater extent. There exists only one drum and the downcomers are welded to it. Single drum boilers are suitable and can adapt to both reheat and non-reheat type of boilers. They can be designed as Corner tube boiler where the frame is not required as the downcomers itself serves the purpose of it and also they are designed as top supported where the whole boiler assembly needs an external frame and supported by top drum.

See also

Related Research Articles

<span class="mw-page-title-main">Boiler</span> Closed vessel in which fluid is heated

A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

<span class="mw-page-title-main">Fire-tube boiler</span> Type of boiler

A fire-tube boiler is a type of boiler invented in 1828 by Mark Seguin, in which hot gases pass from a fire through one or more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.

<span class="mw-page-title-main">Water-tube boiler</span> Type of furnace generating steam

A high pressure watertube boiler is a type of boiler in which water circulates in tubes heated externally by the fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.

<span class="mw-page-title-main">Heat recovery steam generator</span> Energy recovery heat exchanger that recovers heat from a hot gas stream

A heat recovery steam generator (HRSG) is an energy recovery heat exchanger that recovers heat from a hot gas stream, such as a combustion turbine or other waste gas stream. It produces steam that can be used in a process (cogeneration) or used to drive a steam turbine.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

<span class="mw-page-title-main">Cockenzie power station</span> Former coal-fired power station in Scotland

Cockenzie power station was a coal-fired power station in East Lothian, Scotland. It was situated on the south shore of the Firth of Forth, near the town of Cockenzie and Port Seton, 8 mi (13 km) east of the Scottish capital of Edinburgh. The station dominated the local coastline with its distinctive twin chimneys from 1967 until the chimneys' demolition in September 2015. Initially operated by the nationalised South of Scotland Electricity Board, it was operated by Scottish Power following the privatisation of the industry in 1991. In 2005 a WWF report named Cockenzie as the UK's least carbon-efficient power station, in terms of carbon dioxide released per unit of energy generated.

<span class="mw-page-title-main">Steam-electric power station</span>

The steam-electric power station is a power station in which the electric generator is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam-electric power plants is due to the different fuel sources.

<span class="mw-page-title-main">Boiler (power generation)</span> High pressure steam generator

A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.

<span class="mw-page-title-main">Kingsnorth power station</span> Former dual-fired coal and oil power station

Kingsnorth power station was a dual-fired coal and oil power station on the Hoo Peninsula at Medway in Kent, South East England. The four-unit station was operated by energy firm E.ON UK, and had a generating capacity of 2,000 megawatts. It was capable of operating on either coal or oil, though in practice oil was used only as a secondary fuel or for startup. It was also capable of co-firing biofuel, up to a maximum of 10% of the station's fuel mix. A replacement power station, also coal-fired, was considered by owners E.ON, but plans were abandoned. The proposed replacement attracted substantial public protests and criticism, including the 2008 Camp for Climate Action.

<span class="mw-page-title-main">High Marnham Power Station</span> Former coal-fired power station in England

High Marnham Power Station was a coal fuelled power station in Nottinghamshire, to the west of the River Trent, approximately 0.5 miles (0.8 km) north of the village of Marnham. Construction site clearance began in November 1955, No. 1 Unit power generation commenced in October 1959, and the station became fully operational in June 1962. The plant operated until 2003 when it was decommissioned, though the cooling towers weren't demolished until 2012.

<span class="mw-page-title-main">Yarrow boiler</span> Obsolete class of high-pressure water-tube boilers widely used on ships

Yarrow boilers are an important class of high-pressure water-tube boilers. They were developed by Yarrow & Co. (London), Shipbuilders and Engineers and were widely used on ships, particularly warships.

<span class="mw-page-title-main">Stirling boiler</span>

The Stirling boiler is an early form of water-tube boiler, used to generate steam in large land-based stationary plants. Although widely used around 1900, it has now fallen from favour and is rarely seen.

Boilers for generating steam or hot water have been designed in countless shapes, sizes and configurations. An extensive terminology has evolved to describe their common features. This glossary provides definitions for these terms.

<span class="mw-page-title-main">Three-drum boiler</span> Compact furnace with two side water drums and one steam drum above

Three-drum boilers are a class of water-tube boiler used to generate steam, typically to power ships. They are compact and of high evaporative power, factors that encourage this use. Other boiler designs may be more efficient, although bulkier, and so the three-drum pattern was rare as a land-based stationary boiler.

<span class="mw-page-title-main">Forced circulation boiler</span>

A forced circulation boiler is a boiler where a pump is used to circulate water inside the boiler. This differs from a natural circulation boiler which relies on current density to circulate water inside the boiler. In some forced circulation boilers, the water is circulated at twenty times the rate of evaporation.

A cornertube boiler is a type of natural circulation water-tube boiler which differentiates itself from other water tube boilers by its characteristic water-steam cycle and a pre-separation of heated steam from the steam-water mixture occurs outside the drum and the unheated downcomers.

<span class="mw-page-title-main">LaMont boiler</span>

A LaMont boiler is a type of forced circulation water-tube boiler in which the boiler water is circulated through an external pump through long closely spaced tubes of small diameter. The mechanical pump is employed in order to have an adequate and positive circulation in steam and hot water boilers.

<span class="mw-page-title-main">Package boiler</span>

A package boiler is a factory-made boiler. Package boilers are available in a range of standard designs. Package boilers are used for heating and act as a steam generator for small power purposes such as self-powered industrial plants. Package boilers are low pressure designs. A low pressure means low temperature water in the heat exchanger. The large difference between the flame temperature and the heat exchanger discards most of the available entropy. Discarding most of the entropy caps the thermodynamic efficiency below the range needed to make a low pressure boiler suitable for a co-generation plants even when the available capacity is adequate for the application. Advantages of package boilers are that they can be delivered and installed as a complete insulated assembly that doesn’t require a large exclusion zone around itself. The required steam, water, fuel, and electrical connections can be made rapidly. These boilers are inexpensive to operate because their automatic burner management system doesn’t require continuous supervision and they have low scheduled maintenance costs.

Butibori Power Project is a coal-based thermal power plant located at Butibori near Nagpur in the Indian state of Maharashtra. The power plant is operated by the Reliance Power.

<span class="mw-page-title-main">Fairbairn-Beeley boiler</span>

The Fairbairn-Beeley boiler was a design of fire-tube stationary boiler developed in the late 19th century. It takes its name from its two developers, Sir William Fairbairn and Thomas Beeley

References

  1. Sathyanathan, Dr V T (19 February 2010). "Bi Drum and Single Drum Boiler Compared". www.brighthubengineering.com. Retrieved 9 April 2013.