Boiler stay

Last updated

A boiler stay is an internal structural element of a boiler. Where the shell of a boiler or other pressure vessel is made of cylindrical or (part) spherical elements, the internal pressure will be contained without distortion. However, flat surfaces of any significant size will distort under pressure, tending to bulge. [1]

Contents

Types

Stays of various types are used to support these surfaces by tying them together to resist pressure. Some boiler configurations require a great deal of staying. [2] A large locomotive boiler may require several thousand stays to support the firebox. In water tube boilers, stays were sometimes used between their main chambers, and could themselves be water tubes. [3] A knuckle joint is used for diagonal stays in a boiler.

A cylindrical firebox may be self-supporting without stays because of its shape.

See also

Related Research Articles

<span class="mw-page-title-main">Steam engine</span> Engine that uses steam to perform mechanical work

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and crank, into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Steam locomotive</span> Railway locomotive that produces its pulling power through a steam engine

A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels.

<span class="mw-page-title-main">Steam locomotive components</span> Glossary of the main components of a typical steam locomotive

Main components found on a typical steam locomotive include:

<span class="mw-page-title-main">Fire-tube boiler</span> Type of boiler

A fire-tube boiler is a type of boiler invented in 1828 by Mark Seguin, in which hot gases pass from a fire through one or more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.

<span class="mw-page-title-main">Firebox (steam engine)</span> Part of a steam engine

In a steam engine, the firebox is the area where the fuel is burned, producing heat to boil the water in the boiler. Most are somewhat box-shaped, hence the name. The hot gases generated in the firebox are pulled through a rack of tubes running through the boiler.

Henry Albert Hoy (1855–1910) was a locomotive engineer with the Lancashire and Yorkshire Railway (L&YR). Hoy was born on 13 January 1855 in London, and educated at King Edward VI's Grammar School in St Albans, and at St John's College, Liverpool University.

<span class="mw-page-title-main">Belpaire firebox</span> Type of firebox used on steam locomotives

The Belpaire firebox is a type of firebox used on steam locomotives. It was invented by Alfred Belpaire of Belgium in 1864. Today it generally refers to the shape of the outer shell of the firebox which is approximately flat at the top and square in cross-section, indicated by the longitudinal ridges on the top sides. However, it is the similar square cross-section inner firebox which provides the main advantages of this design i.e. it has a greater surface area at the top of the firebox where the heat is greatest, improving heat transfer and steam production, compared with a round-top shape.

<span class="mw-page-title-main">Smokebox</span>

A smokebox is one of the major basic parts of a steam locomotive exhaust system. Smoke and hot gases pass from the firebox through tubes where they pass heat to the surrounding water in the boiler. The smoke then enters the smokebox, and is exhausted to the atmosphere through the chimney. Early locomotives had no smokebox and relied on a long chimney to provide natural draught for the fire but smokeboxes were soon included in the design for two specific reasons. Firstly and most importantly, the blast of exhaust steam from the cylinders, when directed upwards through an airtight smokebox with an appropriate design of exhaust nozzle, effectively draws hot gases through the boiler tubes and flues and, consequently, fresh combustion air into the firebox. Secondly, the smokebox provides a convenient collection point for ash and cinders ("char") drawn through the boiler tubes, which can be easily cleaned out at the end of a working day. Without a smokebox, all char must pass up the chimney or it will collect in the tubes and flues themselves, gradually blocking them.

<span class="mw-page-title-main">Boiler explosion</span> Catastrophic failure of a boiler

A boiler explosion is a catastrophic failure of a boiler.

<span class="mw-page-title-main">Steam dome</span> Water vapor separator in locomotives

The steam dome is a vessel fitted to the top of the boiler of a steam engine. It contains the opening to the main steam pipe and its purpose is to allow this opening to be kept well above the water level in the boiler. This arrangement acts as a simple steam separator and minimises the risk that water will be carried over to the cylinders where it might cause a hydraulic lock, also known as priming.

<span class="mw-page-title-main">Boiler (power generation)</span> High pressure steam generator

A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.

<span class="mw-page-title-main">Flued boiler</span> Type of boiler used to make steam

A shell or flued boiler is an early and relatively simple form of boiler used to make steam, usually for the purpose of driving a steam engine. The design marked a transitional stage in boiler development, between the early haystack boilers and the later multi-tube fire-tube boilers. A flued boiler is characterized by a large cylindrical boiler shell forming a tank of water, traversed by one or more large flues containing the furnace. These boilers appeared around the start of the 19th century and some forms remain in service today. Although mostly used for static steam plants, some were used in early steam vehicles, railway locomotives and ships.

<span class="mw-page-title-main">Vertical boiler with horizontal fire-tubes</span> Small vertical boiler

A vertical boiler with horizontal fire-tubes is a type of small vertical boiler, used to generate steam for small machinery. It is characterised by having many narrow fire-tubes, running horizontally.

Boilers for generating steam or hot water have been designed in countless shapes, sizes and configurations. An extensive terminology has evolved to describe their common features. This glossary provides definitions for these terms.

<span class="mw-page-title-main">Three-drum boiler</span> Compact furnace with two side water drums and one steam drum above

Three-drum boilers are a class of water-tube boiler used to generate steam, typically to power ships. They are compact and of high evaporative power, factors that encourage this use. Other boiler designs may be more efficient, although bulkier, and so the three-drum pattern was rare as a land-based stationary boiler.

<span class="mw-page-title-main">Transverse boiler</span>

A transverse boiler is a boiler used to generate steam to power a vehicle. Unlike other boilers, its external drum is mounted transversely across the vehicle.

<span class="mw-page-title-main">Vertical cross-tube boiler</span> Small, vertical water boiler

A cross-tube boiler was the most common form of small vertical boiler. They were widely used, in the age of steam, as a small donkey boiler, for the independent power of winches, steam cranes etc.

<span class="mw-page-title-main">Launch-type boiler</span>

A launch-type, gunboat or horizontal multitubular boiler is a form of small steam boiler. It consists of a cylindrical horizontal shell with a cylindrical furnace and fire-tubes within this.

<span class="mw-page-title-main">Round-topped boiler</span>

A round-topped boiler is a type of boiler used for some designs of steam locomotive and portable engine. It was an early form of locomotive boiler, although continuing to be used for new locomotives through to the end of steam locomotive manufacture in the 1960s.

<span class="mw-page-title-main">Pistol boiler</span>

A pistol boiler is a design of steam boiler used in light steam tractors and overtype steam wagons. It is noted for the unusual shape of the firebox, a circular design intended to be self-supporting without the use of firebox stays.

References

  1. Hodgson, Jas. T.; Lake, Chas. S. (1954). Locomotive Management (10th ed.). London: Tothill Press. p. 77.
  2. "What is a Combi Boiler? Comparison Between Various Combi Boilers" . Retrieved 2024-02-20.
  3. Robertson, L.S. (1901). Water-Tube Boilers: Based on a Short Course of Lectures Delivered at University College, London. London: Murray. pp. 153–4. OCLC   5640870.