Hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing)

Last updated
Hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing)
Identifiers
EC no. 6.3.5.9
CAS no. 132053-22-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing) (EC 6.3.5.9) is an enzyme that catalyzes the chemical reaction

2 ATP + hydrogenobyrinic acid + 2 L-glutamine + 2 H2O 2 ADP + 2 phosphate + hydrogenobyrinic acid a,c-diamide + 2 L-glutamate

The four substrates of this enzyme are ATP, hydrogenobyrinic acid, L-glutamine, and H2O; its four products are ADP, phosphate, hydrogenobyrinic acid a,c-diamide, and L-glutamate.

This enzyme belongs to the family of ligases, specifically those forming carbon-nitrogen bonds carbon-nitrogen ligases with glutamine as amido-N-donor. The systematic name of this enzyme class is hydrogenobyrinic-acid:L-glutamine amido-ligase (AMP-forming). This enzyme is also called CobB and is part of the biosynthetic pathway to cobalamin (vitamin B12) in aerobic bacteria.

See also

Related Research Articles

Carbamoyl phosphate synthetase (glutamine-hydrolysing) is an enzyme that catalyzes the reactions that produce carbamoyl phosphate in the cytosol. Its systemic name is hydrogen-carbonate:L-glutamine amido-ligase .

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">GMP synthase</span>

Guanosine monophosphate synthetase, also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate.

<span class="mw-page-title-main">Phosphoribosylamine</span> Chemical compound

Phosphoribosylamine (PRA) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from PRA.

<span class="mw-page-title-main">Phosphoribosyl-N-formylglycineamide</span> Chemical compound

Phosphoribosyl-N-formylglycineamide is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from FGAR.

In enzymology, an adenosylcobyric acid synthase (glutamine-hydrolysing) (EC 6.3.5.10) is an enzyme that catalyzes the chemical reaction

In enzymology, an asparaginyl-tRNA synthase (glutamine-hydrolysing) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalt chelatase</span> Enzyme

Cobalt chelatase (EC 6.6.1.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydrofolate synthase</span> Class of enzymes

In enzymology, a dihydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutamate—ethylamine ligase (EC 6.3.1.6) is an enzyme that catalyzes the chemical reaction

In enzymology, a glutaminyl-tRNA synthase (glutamine-hydrolysing) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD+ synthase (glutamine-hydrolysing)</span>

In enzymology, a NAD+ synthase (glutamine-hydrolysing) (EC 6.3.5.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylformylglycinamidine synthase</span>

In enzymology, a phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a tetrahydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramate—L-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">5-Aminoimidazole ribotide</span> Chemical compound

5′-Phosphoribosyl-5-aminoimidazole is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from AIR. It is an intermediate in the adenine pathway and is synthesized from 5′-phosphoribosylformylglycinamidine by AIR synthetase.

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

Adenosylcobinamide-phosphate synthase is an enzyme with systematic name adenosylcobyric acid:(R)-1-aminopropan-2-yl phosphate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

Cobyrinate a,c-diamide synthase (EC ), cobyrinic acid a,c-diamide synthetase, CbiA (gene)) is an enzyme which catalyses the chemical reaction

References