Injury in animals

Last updated

A Camponotus ant that has been injured in a fight with other ants Ant casualty.jpg
A Camponotus ant that has been injured in a fight with other ants

Injury in animals is damage to the body caused by wounding, change in pressure, heat or cold, chemical substances, venoms and biotoxins. Injury prompts an inflammatory response in many taxa of animals; this prompts wound healing, which may be rapid, as in the Cnidaria.

Contents

Causes

Injuries to animals including humans can be caused by wounding, [1] change in pressure, heat or cold, [2] chemical substances, [3] venoms and biotoxins. [4] Such damage may result from attempted predation, territorial fights, falls, and abiotic factors. [5]

Human activities such as trawling can cause wound injury to a high proportion of seabed invertebrates; a study of a Nephrops lobster fishery found that all the discarded Ophiura ophiura brittlestars were injured, along with 57% of the Munida rugosa squat lobsters and 56% of the Astropecten irregularis starfish. Species with stronger shells such as scallops were less often injured. [6] A study of beam trawling in contrast found survival rates over 75% for bottom-living invertebrates. [7]

Effects

Injury causes multiple effects at different biological levels from molecular and cellular to physiological, organismal, behavioural, and ecological. These include such harmful effects as direct damage to cells and tissues; loss of energy reserves; stress responses and changes to immune function; defensive behaviour; and reduced ability to move, feed, reproduce, and compete. In addition, injury sets off a chain of responses that tend to restore structure and function. [1]

Immune responses

The tissues of many animals respond to injury with inflammation, resulting in repair of the wound. [8] Inflammation occurs in many taxa, but the nature of the response varies widely. In Hydra , a cnidarian, damage to the area around the mouth is fully healed within 20 minutes. [9]

Animals in several phyla, including annelids, arthropods, cnidaria, molluscs, nematodes, and vertebrates are able to produce antimicrobial peptides to fight off infection following an injury. [1]

Wound occlusion

Many animals are able to block off the area around an injury rapidly, by coagulating their blood or body fluid. Invertebrates with hydrostatic skeletons (moving by peristalsis) are unable to move without internal fluid under pressure, while those with an open circulation (body fluid not confined to blood vessels) quickly die from loss of body fluid. In addition, open wounds allow bacteria to enter the body. [10] The invertebrate coagulation system is comparable with the innate immune system (the simpler of two systems of protection against infection) of vertebrates. [11]

Wound healing

A sand lizard that has shed its tail when attacked by a predator, and has started to regrow a tail from the site of the injury Zauneidechse 1469.jpg
A sand lizard that has shed its tail when attacked by a predator, and has started to regrow a tail from the site of the injury

In arthropods such as insects, wound healing following injury and coagulation of body fluid involves a process of melanisation of the scab, migration of cells to the scab area, and a degree of repair of the cuticle (which serves as an exoskeleton), [12] in locusts restoring it to 2/3 of its original strength. [13]

Several vertebrates including lizards and salamanders shed their tails (autotomy) when attacked by a predator, [14] especially if the tail is grasped, giving the animal a chance to escape. [15] The tail is at least partially regrown over a period of weeks or months. [16]

Effects on behaviour

Octopuses such as Abdopus aculeatus can survive the loss of an arm (tentacle) but suffer long-term behavioural changes and hypersensitivity afterwards. The species makes use of autotomy, the self-amputation of an arm, as an anti-predator defence. Crush injury to an arm caused the animals to eject ink, to squirt a jet of water, to groom the wound, and later to retract the injured arm and guard it with other arms. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Immune system</span> Biological system protecting an organism against disease

The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, distinguishing them from the organism's own healthy tissue. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.

<span class="mw-page-title-main">Skeleton</span> Part of the body that forms the supporting structure

A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal frame to which the organs and soft tissues attach; and the hydroskeleton, a flexible internal structure supported by the hydrostatic pressure of body fluids.

<span class="mw-page-title-main">Skin</span> Soft outer covering organ of vertebrates

Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.

<span class="mw-page-title-main">Coagulation</span> Process of formation of blood clots

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

<span class="mw-page-title-main">Regeneration (biology)</span> Biological process of renewal, restoration, and tissue growth

In biology, regeneration is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. Every species is capable of regeneration, from bacteria to humans. Regeneration can either be complete where the new tissue is the same as the lost tissue, or incomplete after which the necrotic tissue becomes fibrosis.

A respiratory pigment is a metalloprotein that serves a variety of important functions, its main being O2 transport. Other functions performed include O2 storage, CO2 transport, and transportation of substances other than respiratory gases. There are four major classifications of respiratory pigment: hemoglobin, hemocyanin, erythrocruorin–chlorocruorin, and hemerythrin. The heme-containing globin is the most commonly-occurring respiratory pigment, occurring in at least 9 different phyla of animals.

<i>Nephrops norvegicus</i> Species of lobster

Nephrops norvegicus, known variously as the Norway lobster, Dublin Bay prawn, shlobster (shrimp-lobster), langoustine or scampi, is a slim, coral colored lobster that grows up to 25 cm (10 in) long, and is "the most important commercial crustacean in Europe". It is now the only extant species in the genus Nephrops, after several other species were moved to the closely related genus Metanephrops. It lives in the north-eastern Atlantic Ocean, and parts of the Mediterranean Sea, but is absent from the Baltic Sea and Black Sea. Adults emerge from their burrows at night to feed on worms and fish.

<span class="mw-page-title-main">Autotomy</span> Self-amputation

Autotomy or 'self-amputation', is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude a predator's grasp or to distract the predator and thereby allow escape. Some animals have the ability to regenerate the lost body part later. Autotomy has multiple evolutionary origins and is thought to have evolved at least nine times independently in animals. The term was coined in 1883 by Leon Fredericq.

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

A chronic wound is a wound that does not heal in an orderly set of stages and in a predictable amount of time the way most wounds do; wounds that do not heal within three months are often considered chronic. Chronic wounds seem to be detained in one or more of the phases of wound healing. For example, chronic wounds often remain in the inflammatory stage for too long. To overcome that stage and jump-start the healing process, a number of factors need to be addressed such as bacterial burden, necrotic tissue, and moisture balance of the whole wound. In acute wounds, there is a precise balance between production and degradation of molecules such as collagen; in chronic wounds this balance is lost and degradation plays too large a role.

Animal viruses are viruses that infect animals. Viruses infect all cellular life and although viruses infect every animal, plant, fungus and protist species, each has its own specific range of viruses that often infect only that species.

Priming is the first contact that antigen-specific T helper cell precursors have with an antigen. It is essential to the T helper cells' subsequent interaction with B cells to produce antibodies. Priming of antigen-specific naive lymphocytes occurs when antigen is presented to them in immunogenic form. Subsequently, the primed cells will differentiate either into effector cells or into memory cells that can mount stronger and faster response to second and upcoming immune challenges. T and B cell priming occurs in the secondary lymphoid organs.

<span class="mw-page-title-main">Pain in animals</span> Overview about pain in animals

Pain negatively affects the health and welfare of animals. "Pain" is defined by the International Association for the Study of Pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." Only the animal experiencing the pain can know the pain's quality and intensity, and the degree of suffering. It is harder, if even possible, for an observer to know whether an emotional experience has occurred, especially if the sufferer cannot communicate. Therefore, this concept is often excluded in definitions of pain in animals, such as that provided by Zimmerman: "an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions, results in learned avoidance and may modify species-specific behaviour, including social behaviour." Nonhuman animals cannot report their feelings to language-using humans in the same manner as human communication, but observation of their behaviour provides a reasonable indication as to the extent of their pain. Just as with doctors and medics who sometimes share no common language with their patients, the indicators of pain can still be understood.

<span class="mw-page-title-main">Pain in invertebrates</span> Contentious issue

Pain in invertebrates is a contentious issue. Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required. This is the ability to detect noxious stimuli which evokes a reflex response that moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if a non-human animal's responses to stimuli are similar to those of humans, it is likely to have had an analogous experience. It has been argued that if a pin is stuck in a chimpanzee's finger and they rapidly withdraw their hand, then argument-by-analogy implies that like humans, they felt pain. It has been questioned why the inference does not then follow that a cockroach experiences pain when it writhes after being stuck with a pin. This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others.

<i>Ophiura ophiura</i> Species of brittle star

Ophiura ophiura or the serpent star is a species of brittle star in the order Ophiurida. It is typically found on coastal seabeds around northwestern Europe.

<span class="mw-page-title-main">Pain in cephalopods</span> Contentious issue

Pain in cephalopods is a contentious issue. Pain is a complex mental state, with a distinct perceptual quality but also associated with suffering, which is an emotional state. Because of this complexity, the presence of pain in non-human animals, or another human for that matter, cannot be determined unambiguously using observational methods, but the conclusion that animals experience pain is often inferred on the basis of likely presence of phenomenal consciousness which is deduced from comparative brain physiology as well as physical and behavioural reactions.

Scar free healing is the process by which significant injuries can heal without permanent damage to the tissue the injury has affected. In most healing, scars form due to the fibrosis and wound contraction, however in scar free healing, tissue is completely regenerated. During the 1990s, published research on the subject increased; it is a relatively recent term in the literature. Scar free healing occurs in foetal life but the ability progressively diminishes into adulthood. In other animals such as amphibians, however, tissue regeneration occurs, for example as skin regeneration in the adult axolotl.

Phenoloxidase system is a major defense system in many invertebrates which ultimately leads to melanization of pathogens and damaged tissues. The process of melanization depends on activation of the enzyme phenoloxidase (PO) which is controlled by the prophenoloxidase (proPO) activation system.

<span class="mw-page-title-main">Starfish regeneration</span> Star-shaped organisms

Starfish, or sea stars, are radially symmetrical, star-shaped organisms of the phylum Echinodermata and the class Asteroidea. Aside from their distinguished shape, starfish are most recognized for their remarkable ability to regenerate, or regrow, arms and, in some cases, entire bodies. While most species require the central body to be intact in order to regenerate arms, a few tropical species can grow an entirely new starfish from just a portion of a severed limb. Starfish regeneration across species follows a common three-phase model and can take up to a year or longer to complete. Though regeneration is used to recover limbs eaten or removed by predators, starfish are also capable of autotomizing and regenerating limbs to evade predators and reproduce.

<span class="mw-page-title-main">Injury</span> Wound caused by an external source

Injury is physiological damage to the living tissue of any organism, whether in humans, in other animals, or in plants. Injuries can be caused in many ways, such as mechanically with penetration by sharp objects such as teeth or with blunt objects, by heat or cold, or by venoms and biotoxins. Injury prompts an inflammatory response in many taxa of animals; this prompts wound healing. In both plants and animals, substances are often released to help to occlude the wound, limiting loss of fluids and the entry of pathogens such as bacteria. Many organisms secrete antimicrobial chemicals which limit wound infection; in addition, animals have a variety of immune responses for the same purpose. Both plants and animals have regrowth mechanisms which may result in complete or partial healing over the injury.

References

  1. 1 2 3 Rennolds, Corey W.; Bely, Alexandra E. (29 September 2022). "Integrative biology of injury in animals". Biological Reviews. 98 (1): 34–62. doi: 10.1111/brv.12894 . ISSN   1464-7931.
  2. Sparks 1972, pp. 134–164.
  3. Sparks 1972, pp. 165–202.
  4. Sparks 1972, pp. 203–229.
  5. de Ramirez, Sarah Stewart; Hyder, Adnan A.; Herbert, Hadley K.; Stevens, Kent (2012). "Unintentional injuries: magnitude, prevention, and control". Annual Review of Public Health. 33: 175–191. doi: 10.1146/annurev-publhealth-031811-124558 . ISSN   1545-2093. PMID   22224893.
  6. Bergmann, M; Beare, D.J; Moore, P.G (2001). "Damage sustained by epibenthic invertebrates discarded in the Nephrops fishery of the Clyde Sea area, Scotland" (PDF). Journal of Sea Research. 45 (2): 105–118. doi:10.1016/s1385-1101(01)00053-3. ISSN   1385-1101.
  7. Depestele, Jochen; Desender, Marieke; Benoît, Hugues P.; Polet, Hans; Vincx, Magda (2014). "Short-term survival of discarded target fish and non-target invertebrate species in the "eurocutter" beam trawl fishery of the southern North Sea". Fisheries Research. 154: 82–92. doi:10.1016/j.fishres.2014.01.018. ISSN   0165-7836.
  8. Sparks 1972, p. 20.
  9. Sparks 1972, p. 133.
  10. Cerenius, Lage; Söderhäll, Kenneth (6 November 2010). "Coagulation in Invertebrates". Journal of Innate Immunity. 3 (1): 3–8. doi: 10.1159/000322066 . ISSN   1662-811X. PMID   21051883. S2CID   20798250.
  11. Loof, Torsten G.; Schmidt, Otto; Herwald, Heiko; Theopold, Ulrich (3 November 2010). "Coagulation Systems of Invertebrates and Vertebrates and Their Roles in Innate Immunity: The Same Side of Two Coins?". Journal of Innate Immunity. 3 (1): 34–40. doi: 10.1159/000321641 . ISSN   1662-811X. PMID   21051879. S2CID   2807324.
  12. Parle, Eoin; Dirks, Jan-Henning; Taylor, David (2017). "Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future". Arthropod Structure & Development. 46 (1): 49–55. doi:10.1016/j.asd.2016.11.008. ISSN   1467-8039. PMID   27913289.
  13. Parle, Eoin; Dirks, Jan-Henning; Taylor, David (2016). "Bridging the gap: wound healing in insects restores mechanical strength by targeted cuticle deposition". Journal of the Royal Society Interface. 13 (117): 20150984. doi:10.1098/rsif.2015.0984. ISSN   1742-5689. PMC   4874426 . PMID   27053653.
  14. Emberts, Z.; Escalante, I.; Bateman, P. W. (2019). "The ecology and evolution of autotomy". Biological Reviews. 94 (6): 1881–1896. doi:10.1111/brv.12539. PMID   31240822. S2CID   195660712.
  15. Watson, C. M.; Roelke, C. E.; Pasichnyk, P. N.; Cox, C. L. (2012). "The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models". Zoology. 115 (5): 339–344. doi:10.1016/j.zool.2012.04.001. PMID   22938695.
  16. Bely, Alexandra E. (1 October 2010). "Evolutionary Loss of Animal Regeneration: Pattern and Process". Integrative and Comparative Biology. 50 (4): 515–527. doi: 10.1093/icb/icq118 . ISSN   1540-7063. PMID   21558220.
  17. Alupay, Jean S.; Hadjisolomou, Stavros P.; Crook, Robyn J. (2014). "Arm injury produces long-term behavioral and neural hypersensitivity in octopus". Neuroscience Letters. 558: 137–142. doi:10.1016/j.neulet.2013.11.002. ISSN   0304-3940. PMID   24239646. S2CID   36406642.

Sources