Sand lizard

Last updated

Sand lizard
Lacerta agilis male 2014 G1.jpg
A male sand lizard
Lacerta agilis female 2014 G1.jpg
A female sand lizard
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Family: Lacertidae
Genus: Lacerta
Species:
L. agilis
Binomial name
Lacerta agilis
LacertaAgilisIUCN.svg
Range of L. agilis
  Extant, resident
Puscha-Vodytsia Park, Kyiv Iashchirka prudka skrutilas'.jpg
Puscha-Vodytsia Park, Kyiv

The sand lizard (Lacerta agilis) is a lacertid lizard. There are several subspecies, including L. a. agilis, L. a. argus, and L. a. exigua.

Contents

The sand lizard is distributed across most of Europe from the southern coast of Britain and across the continent to Lake Baikal in Russia. [2] [3] It does not occur in European Turkey. Its distribution is often patchy. [4] In the northern extremes of the sand lizard's distribution, it survives by inhabiting seaside heathlands, where the ground temperature is elevated by the sun. The sand lizard uses warm sand to thermoregulate itself and to incubate its eggs.

Males are known for their bright coloration and aggressive, possessive behaviors when seasonally competing for females. In contrast to other squamates, the sand lizard's mating season is very short. Males choose mates selectively, whereas females mate more indiscriminately. Females usually only lay a single clutch of eggs per year.

Sand lizards spend most of their time basking, foraging, or under vegetation. They prefer to live in diverse habitats. They are largely solitary outside of mating season. Male sand lizards typically have larger territories than females, and they will compete with other males when territory overlaps. Females neighbour each other more amicably, occasionally sharing habitats.

Sand lizards may live up to ten years. Due to their longevity, they are sometimes prone to inbreeding.

Description

The sand lizard is a sexually dimorphic legged lizard. In northwest Europe, both sexes are characterised by lateral and dorsal strips of ocellated (eye-shaped) markings, which appear as dark patches with pale centres. Colouration varies across their European and Russian range. Males have finer markings than females, and their flanks turn bright green during the spring mating season, fading again in the late summer. Male adults may reach a total body length of 19.3 cm, where female adults may reach 18.5 cm.

In the two main western subspecies (L. a. agilis and L. a. argus), the dorsal stripe is thin and interrupted, or not present at all. L. a. argus also includes a plain red or brown-backed phase without any dorsal markings. In these two subspecies, only the flanks of the males turn green in the mating season, but in the eastern subspecies (predominantly L. a. exigua), males can be wholly green, even outside the breeding season.

Sand lizards can self-amputate their tails as a defence mechanism. This ability is called autotomy.

In males, the bright green genital coloration has been shown to be brighter depending on body mass and fighting ability. Males with brighter colors were more likely to initiate aggressive behaviors and win fights, which generally leads to them having a higher mating success. [5]

Sand lizards can live for over ten years, with their average lifespan lasting between 5–6 years. [6]

Habitat and distribution

The sand lizard can be found in a variety of habitat. They prefer dry habitats such as outcrops, fields, hills, beaches, heathland, sand dunes, and rock gardens. While in continental Europe the sand lizard has a wide variety of habitat, in colder places like Great Britain they depend on sand to incubate their eggs and such are restricted to coastal habitats.

Male sand lizards have home ranges with an extremely high amount of overlap; however, female sand lizards have much smaller home ranges (generally less than 100 meters squared) that neighbor each other or they will even share burrows or basking areas with each other. [7] They highly prefer and are much more active in areas with a wide variety of structural characteristics. This can create different temperature micro areas that they are able to move between depending on their needs. [8]

Behavior

General activity

Sand lizards spend extended periods of the day after emerging on long basking sessions. They occasionally take breaks to forage for resources. They also spend a considerable amount of time simply doing normal activity in areas under concealed vegetation. Under poor weather conditions, sand lizards emerge from resting locations later and bask less often throughout the day. Sand lizards most frequently bask on logs. This is most likely due to its absorption and slow release of heat radiation as well as providing a vantage point to spot potential predators and prey. They very rarely share basking sites with other lizards. Male sand lizards especially avoid sharing basking sites with each other, and are only found occasionally sharing with females. They avoid basking on open sand or soil and prefer to use vegetation if they bask on the ground. They thermoregulate themselves by moving between areas of high and low insolation. [8]

Mate selection

In general, female mate choice in organisms is more selective than male mate choice. This is due to the fact that females generally have to invest more time and resources into offspring than males who are under less selective pressures due to their low parental investment. [7]

Generally females will simply reject male attempts at mating outside of their receptive mating period, doing so through a unique head bobbing behavior. However, during their period of receptivity, females have been known to not discriminate against different males and do not reject them besides when they are outside of this period. [7]

Male sand lizards have been shown to highly prefer larger females when selecting mates, but they are still willing to mate with smaller females if the opportunity presents itself. It was observed that some males that were too small for the large females they attempted to court had troubles gripping females with their jaws during copulation due to their small size. This may be one constricting factor in their choice of mate. [7]

Reproduction

Generally, males reach sexual maturity at a smaller size compared with females. Vitellogenesis happens when females are 45 days for the whole population. Both sexes tend to lose body fat during mating period, since their main energy resources come from body fat and from the liver and proximal at the tail. [9]  After a few weeks from the hibernation, male adults become extremely aggressive towards each other, trying to mate as many females as they can. [10]

The female sand lizard lays eggs in loose sand in a sunny location, leaving them to be incubated by the warmth of the ground. [11]

Female sand lizards usually only lay a single clutch each year and clutch sizes that range between six and 15 eggs in a single one. However, there is a lot of variation in the time of year when females end up laying their eggs. But generally a single female sand lizard has a relatively consistent egg laying timing from year-to-year, with the first ones to do so generally being larger, more physically fit females. These early clutches ended up producing offspring that were larger, more successful, and had higher survival rates. Generally offspring from earlier clutches were higher quality offspring. [12]

When female sand lizards produce larger clutch sizes, the size of each individual offspring in it has been observed to decrease. On the opposite side, smaller clutch sizes had fewer, but larger, offspring. When food resources were increased so it was not a limiting factor, clutch size increased significantly, so it is likely that sand lizards produce clutch sizes with different offspring sizes based on resource availability. The other factor that contributes is the physical constraints of the space available to lay their clutches in. [13]

Reproductive success with age

Sand lizards have demonstrated that as their age increases, so does their reproductive success. However, a study showed that this relationship is most likely due to the increase in body size as sand lizards mature rather than increased experience they acquire as they live longer. This may be because female sand lizards that are larger are simply able to produce more clutches with the increased space in their bodies. [14]

Inbreeding avoidance

When a female sand lizard mates with two or more males, sperm competition within the female's reproductive tract may occur. Active selection of sperm by females appears to occur in a manner that enhances female fitness. On the basis of this selective process, the sperm of males that are more distantly related to the female are preferentially used for fertilization, rather than the sperm of close relatives. [15] This preference may enhance the fitness of progeny by reducing inbreeding depression. Multiple inseminations of multiple fully fertile males can result in multiple paternity of the offspring. Mating order and time between copulations has been found to have no effect on the reproductive success of the first or last male to mate. [16]

Natural malformed offspring have been observed in sand lizards most likely due to close kin inbreeding defects. Because of their relatively long lifespan and male polygynous mating, there is a decent chance of inbreeding occurring during their lifespan. Inbreeding has been seen to cause malformations in sand lizards with studies in laboratory settings mirroring the deformations seen naturally in the wild. [6]

Predators and competitors

A female common kestrel with a caught sand lizard 20190525 Pustulka z jaszczurka zwinka Krakow 1629 8755 DxO.jpg
A female common kestrel with a caught sand lizard

Sand lizards are preyed upon by a variety of predators including mustelids, foxes, badgers, birds of prey, and snakes. In addition to wild predators, domestic species, such as pheasants, chickens, and cats.

Sand lizard locomotor performance, agility, and speed is related to their ability to avoid predators (as well as foraging efficiency). Like many lizards, sand lizards are able to separate their tail from the rest of their body in order to escape predators. Sand lizards with autotomy were able to run faster and as a result were better at avoiding predators that were chasing them. [17] These tails do not regrow past 80% the original length after autotomy. [18]

Sand lizards are a frequent carrier of common ticks which are a great risk to the health of the lizards, especially males during breeding seasons when they have great mobility. Males with larger home territory ranges were also subject to carrying even greater loads of parasites. [19] Trematodes, metacercariae, cestode larva, nematodes, nematode larvae and acarines are all examples of parasites that inhabit the alimentary tract of this lizard. [20]

Competitive behaviour

Male sand lizards are polygynous and compete with each other for female mates through incredibly aggressive manners. Sand lizard copulation is a process that lasts 2–4 minutes and after it is completed, the males will guard the individual female for hours or up to several days to protect them. After this time period, they will continue their search for new mates. [7]

When male sand lizards compete over females, they perform ritualistic displays that often escalate into aggressive behaviors and actual combat. Males raise themselves up on all four limbs and turn over to intimidate their opponents, one may back down at this stage but if not, the two can begin fighting actual combat. They mainly attack through biting each other and aim at the heads or other vulnerable spots. Occasionally, even extremely deep cuts into jaw muscles and tissues were observed. Generally, equally sized males will have longer fights than two males with differing sizes; however, males fighting intruders in their own areas of residence did not win significantly more than intruders. [21]

If male sand lizards engage in a fight with another multiple times, they will consider them a rival. However, subsequent aggressive interactions beyond the first one tend to be much shorter on average than the first encounter between the two. This is most likely because they are able to individually recognize others and the result of the fight between two rivals will most likely be similar to the first, so they are able to predict the outcome and end their battle early. [5]

Sand lizard mating seasons are very short, lasting only 17 days of the entire year. Generally males are only able to mate with an absolute maximum of six different females during this time period and because a single mating guarding session can take up to 18% of the entire mating season. [7]

Because of this, a several day time commitment means the investment male sand lizards put into mating is incredibly high and as a result males can begin to develop selective preferences for certain females. Because female sand lizards are often found close together in groups, males have more choices and opportunities to choose a mate depending on their individual characteristics. [7]

Conservation status

This lizard is regarded as threatened and is strictly protected under UK law as it is throughout most of Europe. This is in contrast to L. a. exigua, whose Russian name translates as the "common lizard". The UK Amphibian and Reptile Conservation Trust coordinates conservation action for the sand lizard, including a successful captive-breeding and reintroduction programme.

The sand lizard is facing multiple threats throughout its range, including habitat destruction, habitat degradation, habitat fragmentation, lack of habitat management, climate change and inappropriate habitat management. Although the sand lizard is under strict protection in the UK, there are still actions needed to be taken, including habitat protection, habitat management, species protection, species management, distribution surveys, population and conservation status monitoring, scientific research, and public awareness. [22]

Efforts in the UK have been made to protect and conserve their habitats because the sand lizard is one of only six reptile species found in Britain. Lizard populations were analyzed and their habitats were studied and specific recommendations were made for maintaining the quality of the environments so sand lizards can continue to inhabit those regions. [23]

In Sweden the sand lizard is also considered threatened and is managed by a national protection plan [24] . Populations are highly fragmented and this is thought to have led to an increase in inbreeding and low genetic diversity, resulting in the Swedish sand lizard populations decreasing by around 20-40% in the last ca. 20 years as of 2017 [25] . Swedish sand lizards are generally found around the coast where sparsely vegetative habitats are more common but there are also populations as far north as Värmlands and Dalarna, and despite its name sand does not always appear to be a requirement for populations.

See also

Related Research Articles

<i>Plestiodon fasciatus</i> Species of reptile

The (American) five-lined skink is a species of lizard in the family Scincidae. The species is endemic to North America. It is one of the most common lizards in the eastern U.S. and one of the seven native species of lizards in Canada.

<span class="mw-page-title-main">Sperm competition</span> Reproductive process

Sperm competition is the competitive process between spermatozoa of two or more different males to fertilize the same egg during sexual reproduction. Competition can occur when females have multiple potential mating partners. Greater choice and variety of mates increases a female's chance to produce more viable offspring. However, multiple mates for a female means each individual male has decreased chances of producing offspring. Sperm competition is an evolutionary pressure on males, and has led to the development of adaptations to increase male's chance of reproductive success. Sperm competition results in a sexual conflict between males and females. Males have evolved several defensive tactics including: mate-guarding, mating plugs, and releasing toxic seminal substances to reduce female re-mating tendencies to cope with sperm competition. Offensive tactics of sperm competition involve direct interference by one male on the reproductive success of another male, for instance by mate guarding or by physically removing another male's sperm prior to mating with a female. For an example, see Gryllus bimaculatus.

<span class="mw-page-title-main">Viviparous lizard</span> Species of lizard

The viviparous lizard, or common lizard, is a Eurasian lizard. It lives farther north than any other species of non-marine reptile, and is named for the fact that it is viviparous, meaning it gives birth to live young. Both "Zootoca" and "vivipara" mean "live birth", in (Latinized) Greek and Latin respectively. It was called Lacerta vivipara until the genus Lacerta was split into nine genera in 2007 by Arnold, Arribas & Carranza.

<span class="mw-page-title-main">Common collared lizard</span> Species of reptile

The common collared lizard, also commonly called eastern collared lizard, Oklahoma collared lizard, yellow-headed collared lizard, and collared lizard, is a North American species of lizard in the family Crotaphytidae. The common name "collared lizard" comes from the lizard's distinct coloration, which includes bands of black around the neck and shoulders that look like a collar. Males can be very colorful, with blue green bodies, yellow stripes on the tail and back, and yellow orange throats. There are five recognized subspecies.

<span class="mw-page-title-main">Common side-blotched lizard</span> Species of lizard

The common side-blotched lizard is a species of side-blotched lizard in the family Phrynosomatidae. The species is native to dry regions of the western United States and northern Mexico. It is notable for having a unique form of polymorphism wherein each of the three different male morphs utilizes a different strategy in acquiring mates. The three morphs compete against each other following a pattern of rock paper scissors, where one morph has advantages over another but is outcompeted by the third.

<i>Lampropholis delicata</i> Species of lizard

Lampropholis delicata, the delicate skink, dark-flecked garden sun skink, garden skink, delicate garden skink, rainbow skink or plague skink, or the metallic skink is native to Australia and invasive in New Zealand and Hawaii where it is commonly found in gardens. The species is known for their color dimorphism between males and females; striped morphs and non-striped morphs exist in this species, however the stripe is less pronounced in males. This species' diet consists of a wide range of prey, such as spiders, bees, larvae, and termites. Mating occurs in the late summer and generally one clutch of 2 to 4 eggs are laid per year by each female.

<i>Gryllus bimaculatus</i> Species of cricket

Gryllus bimaculatus is a species of cricket in the subfamily Gryllinae. Most commonly known as the two-spotted cricket, it has also been called the "African" or "Mediterranean field cricket", although its recorded distribution also includes much of Asia, including China and Indochina through to Borneo. It can be discriminated from other Gryllus species by the two dot-like marks on the base of its wings.

<span class="mw-page-title-main">Sexual conflict</span> Term in evolutionary biology

Sexual conflict or sexual antagonism occurs when the two sexes have conflicting optimal fitness strategies concerning reproduction, particularly over the mode and frequency of mating, potentially leading to an evolutionary arms race between males and females. In one example, males may benefit from multiple matings, while multiple matings may harm or endanger females due to the anatomical differences of that species. Sexual conflict underlies the evolutionary distinction between male and female.

<i>Stegodyphus lineatus</i> Species of spider

Stegodyphus lineatus is the only European species of the spider genus Stegodyphus. Male S. lineatus can grow up to 12 mm long while females can grow up to 15 mm. The colour can range from whitish to almost black. In most individuals the opisthosoma is whitish with two broad black longitudinal stripes. Males and females look similar, but the male is generally richer in contrast and has a bulbous forehead. The species name refers to the black lines on the back of these spiders. S. lineatus is found in the southern Mediterranean region of Europe and as far east as Tajikistan.

<i>Iberolacerta cyreni</i> Species of lizard

Iberolacerta cyreni, commonly known as the Cyren's rock lizard, is a species of lizard in the family Lacertidae. The species is endemic to central Spain and is currently listed as endangered by the IUCN due to global warming. I. cyreni has evolved to exhibit key behavioral characteristics, namely individual recognition, in which a lizard is able to identify another organism of the same species, as well as thermoregulation.

<span class="mw-page-title-main">Eastern three-lined skink</span> Species of lizard

The eastern three-lined skink, also known commonly as the bold-striped cool-skink, is a species of skink, a lizard in the family Scincidae. The species is endemic to Australia. A. duperreyi has been extensively studied in the context of understanding the evolution of learning, viviparity in lizards, and temperature- and genetic-sex determination. A. duperreyi is classified as a species of "Least Concern" by the IUCN.

<span class="mw-page-title-main">Female sperm storage</span>

Female sperm storage is a biological process and often a type of sexual selection in which sperm cells transferred to a female during mating are temporarily retained within a specific part of the reproductive tract before the oocyte, or egg, is fertilized. This process takes place in some species of animals. The site of storage is variable among different animal taxa and ranges from structures that appear to function solely for sperm retention, such as insect spermatheca and bird sperm storage tubules, to more general regions of the reproductive tract enriched with receptors to which sperm associate before fertilization, such as the caudal portion of the cow oviduct containing sperm-associating annexins. Female sperm storage is an integral stage in the reproductive process for many animals with internal fertilization. It has several documented biological functions including:

<span class="mw-page-title-main">Major histocompatibility complex and sexual selection</span> Adaptive immune gene selection

Major histocompatibility complex (MHC) genes code for cell surface proteins that facilitate an organism's immune response to pathogens as well as its ability to avoid attacking its own cells. These genes have maintained an unusually high level of allelic diversity throughout time and throughout different populations. This means that for each MHC gene, many alleles consistently exist within the population, and many individuals are heterozygous at MHC loci.

<span class="mw-page-title-main">Sexual selection in scaled reptiles</span>

Sexual selection in scaled reptiles studies how sexual selection manifests in snakes and lizards, which constitute the order Squamata of reptiles. Each of the over three thousand snakes use different tactics in acquiring mates. Ritual combat between males for the females they want to mate with includes topping, a behavior exhibited by most viperids in which one male will twist around the vertically elevated fore body of its opponent and forcing it downward. It is common for neck biting to occur while the snakes are entwined.

<span class="mw-page-title-main">Sexual selection in amphibians</span> Choice of and competition for mates

Sexual selection in amphibians involves sexual selection processes in amphibians, including frogs, salamanders and newts. Prolonged breeders, the majority of frog species, have breeding seasons at regular intervals where male-male competition occurs with males arriving at the waters edge first in large number and producing a wide range of vocalizations, with variations in depth of calls the speed of calls and other complex behaviours to attract mates. The fittest males will have the deepest croaks and the best territories, with females making their mate choices at least partly based on the males depth of croaking. This has led to sexual dimorphism, with females being larger than males in 90% of species, males in 10% and males fighting for groups of females.

Cryptic female choice is a form of mate choice which occurs both in pre and post copulatory circumstances when females in certain species use physical or chemical mechanisms to control a male's success of fertilizing their ova or ovum; i.e. by selecting whether sperm are successful in fertilizing their eggs or not. It occurs in internally-fertilizing species and involves differential use of sperm by females when sperm are available in the reproductive tract.

<span class="mw-page-title-main">Polyandry in animals</span> Class of mating system in non-human species

In behavioral ecology, polyandry is a class of mating system where one female mates with several males in a breeding season. Polyandry is often compared to the polygyny system based on the cost and benefits incurred by members of each sex. Polygyny is where one male mates with several females in a breeding season . A common example of polyandrous mating can be found in the field cricket of the invertebrate order Orthoptera. Polyandrous behavior is also prominent in many other insect species, including the red flour beetle, the adzuki bean weevil, and the species of spider Stegodyphus lineatus. Polyandry also occurs in some primates such as marmosets, mammal groups, the marsupial genus' Antechinus and bandicoots, around 1% of all bird species, such as jacanas and dunnocks, insects such as honeybees, and fish such as pipefish.

<i>Ctenophorus decresii</i> Species of lizard

Ctenophorus decresii, also known commonly as the tawny dragon or the tawny crevice-dragon, is a species of lizard in the family Agamidae. The species is endemic to Australia. The average snout-to-vent length (SVL) of the species is 80.76 mm (3.180 in) with larger individuals being around 89 mm (3.5 in) and smaller individuals around 72 mm (2.8 in). The optimal time for mating in this species is two to three weeks after the females emerge from hibernation. Eggs are typically laid from September to October with most of them being laid earlier in the period. C. decresii is known for its variations in throat colours which change based on environmental conditions. Its primary food sources consist of both vegetation and invertebrates, and it prefers to live in rocky habitats.

<span class="mw-page-title-main">Tree-crevice skink</span> Species of lizard

The tree-crevice skink or tree skink (Egernia striolata) is a species of skink, a lizard in the family Scincidae. The species is endemic to Australia and is found in the states of Victoria, the Northern Territory, Queensland, New South Wales and South Australia. E. striolata tend to live in crevices and cracks in hollow logs or rocks. They greatly prefer heterogeneous and structurally diverse habitats and their behavior changes depending on the habitat they live in.

<i>Aspidoscelis costatus</i> Species of lizard

Aspidoscelis costatus, also known as the western Mexico whiptail, is a species of whiptail lizard endemic to Mexico, including Guerrero, Morelos, and Puebla in southern Mexico, as well as other Mexican states. Its range spans both temperate and tropical habitats, and even densely populated urban areas. Its common name, the Western Mexico Whiptail, can easily be confused with the Western Whiptail, which refers to a different lizard, Aspidoscelis tigris.

References

  1. Aghasyan, A.; Avci, A.; Tuniyev, B.; et al. (2021). "Lacerta agilis". IUCN Red List of Threatened Species . 2021: e.T157288A49644624. doi: 10.2305/IUCN.UK.2021-2.RLTS.T157288A49644624.en . Retrieved 12 November 2021.
  2. M., Smith (1969). The British Amphibians and Reptiles. Collins, London, UK.
  3. "Lacerta Agilis LINNAEUS, 1758". www.lacerta.de. Retrieved 30 August 2021.
  4. Arnold, E. Nicholas; Arribas, Oscar; Carranza, Salvador (2007). "Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera" (PDF). Zootaxa. 1430. Auckland, New Zealand: Magnolia Press: 1–86. doi:10.11646/zootaxa.1430.1.1. ISBN   978-1-86977-097-6 . Retrieved 12 July 2017.
  5. 1 2 Olsson, Mats (1994-10-01). "Rival recognition affects male contest behavior in sand lizards (Lacerta agilis)". Behavioral Ecology and Sociobiology. 35 (4): 249–252. doi:10.1007/BF00170705. ISSN   1432-0762. S2CID   24228867.
  6. 1 2 Olsson, M.; Gullberg, A.; Tegelström, H. (1996). "Malformed offspring, sibling matings, and selection against inbreeding in the sand lizard (Lacerta agilis)". Journal of Evolutionary Biology. 9 (2): 229–242. doi:10.1046/j.1420-9101.1996.9020229.x. ISSN   1420-9101. S2CID   84455614.
  7. 1 2 3 4 5 6 7 Olsson, Mats (1993-05-01). "Male preference for large females and assortative mating for body size in the sand lizard (Lacerta agilis)". Behavioral Ecology and Sociobiology. 32 (5): 337–341. doi:10.1007/BF00183789. ISSN   1432-0762. S2CID   37769992.
  8. 1 2 House, S. M.; Taylor, P. J.; Spellerberg, I. F. (1979-01-01). "Patterns of daily behaviour in two lizard species Lacerta agilis L. and Lacerta vivipara Jacquin". Oecologia. 44 (3): 396–402. Bibcode:1979Oecol..44..396H. doi:10.1007/BF00545244. ISSN   1432-1939. PMID   28310296. S2CID   22058312.
  9. Strasbourg (26 October 2006). "Action Plan for the Conservation of the Sand Lizard (Lacerta agilis) in Northwest Europe"
  10. Corbett, K.F. and D.L. Tamarind. 1979. Conservation of the sand lizard, Lacerta agilis, by habitat management. Brit. J. Herp. 5: 799-823.
  11. Olsson, Mats (1988-01-01). "Ecology of a Swedish population of the sand lizard (Lacerta agilis) - a preliminary report". Mertensiella. 1: 86–91.
  12. Olsson, M.; Shine, R. (1997). "The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better". Journal of Evolutionary Biology. 10 (3): 369–381. doi:10.1046/j.1420-9101.1997.10030369.x. ISSN   1420-9101. S2CID   84691498.
  13. Olsson, M.; Shine, R. (January 1997). "The Limits to Reproductive Output: Offspring Size Versus Number in the Sand Lizard (Lacerta agilis)". The American Naturalist. 149 (1): 179–188. doi:10.1086/285985. ISSN   0003-0147. S2CID   84986874.
  14. Olsson, Mats; Shine, Richard (1996-01-01). "Does reproductive success increase with age or with size in species with indeterminate growth? A case study using sand lizards (Lacerta agilis)". Oecologia. 105 (2): 175–178. Bibcode:1996Oecol.105..175O. doi:10.1007/BF00328543. ISSN   1432-1939. PMID   28307079. S2CID   13366940.
  15. Olsson M, Shine R, Madsen T, Gullberg A, Tegelström H (1997). "Sperm choice by females". Trends Ecol. Evol. 12 (11): 445–6. doi:10.1016/s0169-5347(97)85751-5. PMID   21238151.
  16. Olsson, Mats; Gullberg, Annica; Tegelströ, Håkan (1994-07-01). "Sperm competition in the sand lizard, Lacerta agilis". Animal Behaviour. 48 (1): 193–200. doi:10.1006/anbe.1994.1226. ISSN   0003-3472. S2CID   53190531.
  17. Ekner-Grzyb, Anna; Sajkowska, Zofia; Dudek, Krzysztof; Gawałek, Monika; Skórka, Piotr; Tryjanowski, Piotr (2013). "Locomotor performance of sand lizards (Lacerta agilis): effects of predatory pressure and parasite load". Acta Ethologica. 16 (3): 173–179. doi:10.1007/s10211-013-0148-2. ISSN   0873-9749. PMC   3775096 . PMID   24052686.
  18. Khabibullin, V. F. (2000-01-01). "Some specific features of tail regeneration in the sand lizard (Lacerta agilis)". Russian Journal of Ecology. 31 (1): 66–68. Bibcode:2000RuJEc..31...66K. doi:10.1007/BF02799730. ISSN   1608-3334. S2CID   44869955.
  19. Wieczorek, Magdalena; Rektor, Robert; Najbar, Bartłomiej; Morelli, Federico (2020-05-26). "Tick parasitism is associated with home range area in the sand lizard, Lacerta agilis". Amphibia-Reptilia. 41 (4): 479–488. doi:10.1163/15685381-bja10018. ISSN   1568-5381. S2CID   219744018.
  20. Lewin, J. (1992). "Parasites of the sand lizard [Lacerta agilis L.] in Poland". Acta Parasitologica. 37 (1). ISSN   1230-2821.
  21. Olsson, Mats (1992-08-01). "Contest success in relation to size and residency in male sand lizards, Lacerta agilis". Animal Behaviour. 44: 386–388. doi:10.1016/0003-3472(92)90046-C. ISSN   0003-3472. S2CID   53146160.
  22. Russell, Liam (December 2012). "THE CONSERVATION AND LANDSCAPE GENETICS OF THE SAND LIZARD Lacerta agilis"
  23. House, Susan M.; Spellerberg, Ian F. (1983). "Ecology and Conservation of the Sand Lizard (Lacerta agilis L.) Habitat in Southern England". Journal of Applied Ecology. 20 (2): 417–437. Bibcode:1983JApEc..20..417H. doi:10.2307/2403517. ISSN   0021-8901. JSTOR   2403517.
  24. "Åtgärdsprogram för sandödla". www.naturvardsverket.se (in Swedish). Retrieved 2024-10-30.
  25. "Åtgärdsprogram för sandödla". www.naturvardsverket.se (in Swedish). Retrieved 2024-10-30.