Interval cycle

Last updated

In music, an interval cycle is a collection of pitch classes created from a sequence of the same interval class. [1] In other words, a collection of pitches by starting with a certain note and going up by a certain interval until the original note is reached (e.g. starting from C, going up by 3 semitones repeatedly until eventually C is again reached - the cycle is the collection of all the notes met on the way). In other words, interval cycles "unfold a single recurrent interval in a series that closes with a return to the initial pitch class". See: wikt:cycle.

Contents

Interval cycles are notated by George Perle using the letter "C" (for cycle), with an interval class integer to distinguish the interval. Thus the diminished seventh chord would be C3 and the augmented triad would be C4. A superscript may be added to distinguish between transpositions, using 011 to indicate the lowest pitch class in the cycle. "These interval cycles play a fundamental role in the harmonic organization of post-diatonic music and can easily be identified by naming the cycle." [2]

Here are interval cycles C1, C2, C3, C4 and C6:

Interval cycles C1-C4 and C6.PNG

Twelve-tone interval cycles complete the aggregate: C1 once (top) or C6 six times (bottom). Twelve-tone interval cycles.png
Twelve-tone interval cycles complete the aggregate: C1 once (top) or C6 six times (bottom).

Interval cycles assume the use of equal temperament and may not work in other systems such as just intonation. For example, if the C4 interval cycle used justly-tuned major thirds it would fall flat of an octave return by an interval known as the diesis. Put another way, a major third above G is B, which is only enharmonically the same as C in systems such as equal temperament, in which the diesis has been tempered out.

Interval cycles are symmetrical and thus non-diatonic. However, a seven-pitch segment of C7 will produce the diatonic major scale: [2]

7-note segment of C5.svg

This is known also known as a generated collection. A minimum of three pitches are needed to represent an interval cycle. [2]

Cyclic tonal progressions in the works of Romantic composers such as Gustav Mahler and Richard Wagner form a link with the cyclic pitch successions in the atonal music of Modernists such as Béla Bartók, Alexander Scriabin, Edgard Varèse, and the Second Viennese School (Arnold Schoenberg, Alban Berg, and Anton Webern). At the same time, these progressions signal the end of tonality. [2]

Interval cycles are also important in jazz, such as in Coltrane changes.

"Similarly," to any pair of transpositionally related sets being reducible to two transpositionally related representations of the chromatic scale, "the pitch-class relations between any pair of inversionally related sets is reducible to the pitch-class relations between two inversionally related representations of the semitonal scale." [3] Thus an interval cycle or pair of cycles may be reducible to a representation of the chromatic scale.

As such, interval cycles may be differentiated as ascending or descending, with, "the ascending form of the semitonal scale [called] a 'P cycle' and the descending form [called] an 'I cycle'," while, "inversionally related dyads [are called] 'P/I' dyads." [4] P/I dyads will always share a sum of complementation. Cyclic sets are those "sets whose alternate elements unfold complementary cycles of a single interval," [5] that is an ascending and descending cycle:

Cyclic set (sum 9) from Berg's Lyric Suite Berg's Lyric Suite cyclic set.png
Cyclic set (sum 9) from Berg's Lyric Suite

In 1920 Berg discovered/created a "master array" of all twelve interval cycles:

     Berg's Master Array of Interval Cycles Cycles P 0 11 10  9  8  7  6  5  4  3  2  1  0  P  I  I 0  1  2  3  4  5  6  7  8  9 10 11  0        _______________________________________  0  0  | 0  0  0  0  0  0  0  0  0  0  0  0  0 11  1  | 0 11 10  9  8  7  6  5  4  3  2  1  0 10  2  | 0 10  8  6  4  2  0 10  8  6  4  2  0  9  3  | 0  9  6  3  0  9  6  3  0  9  6  3  0  8  4  | 0  8  4  0  8  4  0  8  4  0  8  4  0  7  5  | 0  7  2  9  4 11  6  1  8  3 10  5  0  6  6  | 0  6  0  6  0  6  0  6  0  6  0  6  0  5  7  | 0  5 10  3  8  1  6 11  4  9  2  7  0  4  8  | 0  4  8  0  4  8  0  4  8  0  4  8  0  3  9  | 0  3  6  9  0  3  6  9  0  3  6  9  0  2 10  | 0  2  4  6  8 10  0  2  4  6  8 10  0  1 11  | 0  1  2  3  4  5  6  7  8  9 10 11  0  0  0  | 0  0  0  0  0  0  0  0  0  0  0  0  0

Source: [6]

See also

Related Research Articles

In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

Chromatic scale Musical scale with twelve pitches separated by semitone intervals

The chromatic scale is a set of twelve pitches used in tonal music, with notes separated by the interval of a semitone. Almost all western musical instruments, such as the piano, are made to produce the chromatic scale, while other instruments capable of continuously variable pitch, such as the trombone and violin, can also produce microtones, or notes between those available on a piano.

Twelve-tone technique Musical composition method using all 12 chromatic scale notes equally often & not in a key

The twelve-tone technique—also known as dodecaphony, twelve-tone serialism, and twelve-note composition—is a method of musical composition first devised by Austrian composer Josef Matthias Hauer, who published his "law of the twelve tones" in 1919. In 1923, Arnold Schoenberg (1874–1951) developed his own, better-known version of 12-tone technique, which became associated with the "Second Viennese School" composers, who were the primary users of the technique in the first decades of its existence. The technique is a means of ensuring that all 12 notes of the chromatic scale are sounded as often as one another in a piece of music while preventing the emphasis of any one note through the use of tone rows, orderings of the 12 pitch classes. All 12 notes are thus given more or less equal importance, and the music avoids being in a key. Over time, the technique increased greatly in popularity and eventually became widely influential on 20th-century composers. Many important composers who had originally not subscribed to or actively opposed the technique, such as Aaron Copland and Igor Stravinsky, eventually adopted it in their music.

An octatonic scale is any eight-note musical scale. However, the term most often refers to the symmetric scale composed of alternating whole and half steps, as shown at right. In classical theory, this scale is commonly called the octatonic scale, although there are a total of 42 enharmonically non-equivalent, transpositionally non-equivalent eight-note sets.

Bohlen–Pierce scale

The Bohlen–Pierce scale is a musical tuning and scale, first described in the 1970s, that offers an alternative to the octave-repeating scales typical in Western and other musics, specifically the equal-tempered diatonic scale.

Set theory (music) Branch of music theory

Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that.

Semitone Musical interval

A semitone, also called a half step or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale. For example, C is adjacent to C; the interval between them is a semitone.

Major third Musical interval

In classical music, a third is a musical interval encompassing three staff positions, and the major third is a third spanning four semitones. Along with the minor third, the major third is one of two commonly occurring thirds. It is qualified as major because it is the larger of the two: the major third spans four semitones, the minor third three. For example, the interval from C to E is a major third, as the note E lies four semitones above C, and there are three staff positions from C to E. Diminished and augmented thirds span the same number of staff positions, but consist of a different number of semitones.

The intervals from the tonic (keynote) in an upward direction to the second, to the third, to the sixth, and to the seventh scale degrees of a major scale are called major.

In music using the twelve tone technique, combinatoriality is a quality shared by twelve-tone tone rows whereby each section of a row and a proportionate number of its transformations combine to form aggregates. Much as the pitches of an aggregate created by a tone row do not need to occur simultaneously, the pitches of a combinatorially created aggregate need not occur simultaneously. Arnold Schoenberg, creator of the twelve-tone technique, often combined P-0/I-5 to create "two aggregates, between the first hexachords of each, and the second hexachords of each, respectively."

Complement (music)

In music theory, complement refers to either traditional interval complementation, or the aggregate complementation of twelve-tone and serialism.

In music, transposition refers to the process or operation of moving a collection of notes up or down in pitch by a constant interval.

The shifting of a melody, a harmonic progression or an entire musical piece to another key, while maintaining the same tone structure, i.e. the same succession of whole tones and semitones and remaining melodic intervals.

Comma (music)

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways. Strictly speaking, there are only two kinds of comma, the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves". The word comma used without qualification refers to the syntonic comma, which can be defined, for instance, as the difference between an F tuned using the D-based Pythagorean tuning system, and another F tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, B and A are both approximated by the same interval although they are a septimal kleisma apart.

Quarter-comma meantone, or 14-comma meantone, was the most common meantone temperament in the sixteenth and seventeenth centuries, and was sometimes used later. In this system the perfect fifth is flattened by one quarter of a syntonic comma (81:80), with respect to its just intonation used in Pythagorean tuning ; the result is 3/2 × 14 = 45 ≈ 1.49535, or a fifth of 696.578 cents. This fifth is then iterated to generate the diatonic scale and other notes of the temperament. The purpose is to obtain justly intoned major thirds. It was described by Pietro Aron in his Toscanello de la Musica of 1523, by saying the major thirds should be tuned to be "sonorous and just, as united as possible." Later theorists Gioseffo Zarlino and Francisco de Salinas described the tuning with mathematical exactitude.

Interval vector

In musical set theory, an interval vector is an array of natural numbers which summarize the intervals present in a set of pitch classes. Other names include: ic vector, PIC vector and APIC vector

Rothenberg propriety

In diatonic set theory, Rothenberg propriety is an important concept, lack of contradiction and ambiguity, in the general theory of musical scales which was introduced by David Rothenberg in a seminal series of papers in 1978. The concept was independently discovered in a more restricted context by Gerald Balzano, who termed it coherence.

In music theory, an inversion is a type of change to intervals, chords, voices, and melodies. In each of these cases, "inversion" has a distinct but related meaning. The concept of inversion also plays an important role in musical set theory.

In music, a cyclic set is a set, "whose alternate elements unfold complementary cycles of a single interval." Those cycles are ascending and descending, being related by inversion since complementary:

Five-limit tuning

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2−3·31·51 = 15/8.

Forte number

In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music. The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches.

All-interval twelve-tone row

In music, an all-interval twelve-tone row, series, or chord, is a twelve-tone tone row arranged so that it contains one instance of each interval within the octave, 1 through 11. A "twelve-note spatial set made up of the eleven intervals [between consecutive pitches]." There are 1,928 distinct all-interval twelve-tone rows. These sets may be ordered in time or in register. "Distinct" in this context means in transpositionally and rotationally normal form, and disregarding inversionally related forms. These 1,928 tone rows have been independently rediscovered several times, their first computation probably was by Andre Riotte in 1961, see.

References

  1. 1 2 Whittall, Arnold. 2008. The Cambridge Introduction to Serialism, p. 273-74. New York: Cambridge University Press. ISBN   978-0-521-68200-8 (pbk).
  2. 1 2 3 4 Perle, George (1990). The Listening Composer, p. 21. California: University of California Press. ISBN   0-520-06991-9.
  3. Perle, George (1996). Twelve-Tone Tonality, p. 7. ISBN   0-520-20142-6.
  4. Perle (1996), p. 8-9.
  5. Perle (1996), p. 21.
  6. Perle (1996), p. 80.