This article needs additional citations for verification .(April 2018) |
Java platform editions |
---|
|
Java Platform, Standard Edition (Java SE) is a computing platform for development and deployment of portable code for desktop and server environments. [1] Java SE was formerly known as Java 2 Platform, Standard Edition (J2SE).
The platform uses the Java programming language and is part of the Java software-platform family. Java SE defines a range of general-purpose APIs—such as Java APIs for the Java Class Library—and also includes the Java Language Specification and the Java Virtual Machine Specification. [2] OpenJDK is the official reference implementation since version 7. [3] [4] [5]
The platform was known as Java 2 Platform, Standard Edition or J2SE from version 1.2, until the name was changed to Java Platform, Standard Edition or Java SE in version 1.5. The "SE" is used to distinguish the base platform from the Enterprise Edition (Java EE) and Micro Edition (Java ME) platforms. The "2" was originally intended to emphasize the major changes introduced in version 1.2, but was removed in version 1.6. The naming convention has been changed several times over the Java version history. Starting with J2SE 1.4 (Merlin), Java SE has been developed under the Java Community Process, which produces descriptions of proposed and final specifications for the Java platform called Java Specification Requests (JSR). [6] JSR 59 was the umbrella specification for J2SE 1.4 and JSR 176 specified J2SE 5.0 (Tiger). Java SE 6 (Mustang) was released under JSR 270.
Java Platform, Enterprise Edition (Java EE) is a related specification that includes all the classes in Java SE, plus a number that are more useful to programs that run on servers as opposed to workstations.
Java Platform, Micro Edition (Java ME) is a related specification intended to provide a certified collection of Java APIs for the development of software for small, resource-constrained devices such as cell phones, PDAs and set-top boxes.
The Java Runtime Environment (JRE) and Java Development Kit (JDK) are the actual files downloaded and installed on a computer to run or develop Java programs, respectively.
The Java package java.lang
contains fundamental classes and interfaces closely tied to the language and runtime system. This includes the root classes that form the class hierarchy, types tied to the language definition, basic exceptions, math functions, threading, security functions, as well as some information on the underlying native system. This package contains 22 of 32 Error
classes provided in JDK 6.
The main classes and interfaces in java.lang
are:
Object
– the class that is the root of every class hierarchy. Enum
– the base class for enumeration classes (as of J2SE 5.0). Class
– the class that is the root of the Java reflection system. Throwable
– the class that is the base class of the exception class hierarchy. Error
, Exception
, and RuntimeException
– the base classes for each exception type. Thread
– the class that allows operations on threads. String
– the class for strings and string literals. StringBuffer
and StringBuilder
– classes for performing string manipulation (StringBuilder
as of J2SE 5.0). Comparable
– the interface that allows generic comparison and ordering of objects (as of J2SE 1.2). Iterable
– the interface that allows generic iteration using the enhanced for
loop (as of J2SE 5.0). ClassLoader
, Process
, Runtime
, SecurityManager
, and System
– classes that provide "system operations" that manage the dynamic loading of classes, creation of external processes, host environment inquiries such as the time of day, and enforcement of security policies. Math
and StrictMath
– classes that provide basic math functions such as sine, cosine, and square root (StrictMath
as of J2SE 1.3).Classes in java.lang
are automatically imported into every source file.
The java.lang.ref
package provides more flexible types of references than are otherwise available, permitting limited interaction between the application and the Java Virtual Machine (JVM) garbage collector. It is an important package, central enough to the language for the language designers to give it a name that starts with "java.lang", but it is somewhat special-purpose and not used by a lot of developers. This package was added in J2SE 1.2.
Java has an expressive system of references and allows for special behavior for garbage collection. A normal reference in Java is known as a "strong reference". The java.lang.ref
package defines three other types of references—soft, weak, and phantom references. Each type of reference is designed for a specific use.
SoftReference
can be used to implement a cache. An object that is not reachable by a strong reference (that is, not strongly reachable), but is referenced by a soft reference is called "softly reachable". A softly reachable object may be garbage collected at the discretion of the garbage collector. This generally means that softly reachable objects are only garbage collected when free memory is low—but again, this is at the garbage collector's discretion. Semantically, a soft reference means, "Keep this object when nothing else references it, unless the memory is needed." WeakReference
is used to implement weak maps. An object that is not strongly or softly reachable, but is referenced by a weak reference is called "weakly reachable". A weakly reachable object is garbage collected in the next collection cycle. This behavior is used in the class java.util.WeakHashMap
. A weak map allows the programmer to put key/value pairs in the map and not worry about the objects taking up memory when the key is no longer reachable anywhere else. Another possible application of weak references is the string intern pool. Semantically, a weak reference means "get rid of this object when nothing else references it at the next garbage collection." PhantomReference
is used to reference objects that have been marked for garbage collection and have been finalized, but have not yet been reclaimed. An object that is not strongly, softly or weakly reachable, but is referenced by a phantom reference is called "phantom reachable." This allows for more flexible cleanup than is possible with the finalization mechanism alone. Semantically, a phantom reference means "this object is no longer needed and has been finalized in preparation for being collected."Each of these reference types extends the Reference
class, which provides the get()
method to return a strong reference to the referent object (or null
if the reference has been cleared or if the reference type is phantom), and the clear()
method to clear the reference.
The java.lang.ref
also defines the class ReferenceQueue
, which can be used in each of the applications discussed above to keep track of objects that have changed reference type. When a Reference
is created it is optionally registered with a reference queue. The application polls the reference queue to get references that have changed reachability state.
Reflection is a constituent of the Java API that lets Java code examine and "reflect" on Java components at runtime and use the reflected members. Classes in the java.lang.reflect
package, along with java.lang.Class
and java.lang.Package
accommodate applications such as debuggers, interpreters, object inspectors, class browsers, and services such as object serialization and JavaBeans that need access to either the public members of a target object (based on its runtime class) or the members declared by a given class. This package was added in JDK 1.1.
Reflection is used to instantiate classes and invoke methods using their names, a concept that allows for dynamic programming. Classes, interfaces, methods, fields, and constructors can all be discovered and used at runtime. Reflection is supported by metadata that the JVM has about the program.
There are basic techniques involved in reflection:
Discovery typically starts with an object and calling the Object.getClass()
method to get the object's Class
. The Class
object has several methods for discovering the contents of the class, for example:
getMethods()
– returns an array of Method
objects representing all the public methods of the class or interface getConstructors()
– returns an array of Constructor
objects representing all the public constructors of the class getFields()
– returns an array of Field
objects representing all the public fields of the class or interface getClasses()
– returns an array of Class
objects representing all the public classes and interfaces that are members (e.g. inner classes) of the class or interface getSuperclass()
– returns the Class
object representing the superclass of the class or interface (null
is returned for interfaces) getInterfaces()
– returns an array of Class
objects representing all the interfaces that are implemented by the class or interfaceThe Class
object can be obtained either through discovery, by using the class literal (e.g. MyClass.class
) or by using the name of the class (e.g. Class.forName("mypackage.MyClass")
). With a Class
object, member Method
, Constructor
, or Field
objects can be obtained using the symbolic name of the member. For example:
getMethod("methodName", Class...)
– returns the Method
object representing the public method with the name "methodName" of the class or interface that accepts the parameters specified by the Class...
parameters. getConstructor(Class...)
– returns the Constructor
object representing the public constructor of the class that accepts the parameters specified by the Class...
parameters. getField("fieldName")
– returns the Field
object representing the public field with the name "fieldName" of the class or interface.Method
, Constructor
, and Field
objects can be used to dynamically access the represented member of the class. For example:
Field.get(Object)
– returns an Object
containing the value of the field from the instance of the object passed to get()
. (If the Field
object represents a static field then the Object
parameter is ignored and may be null
.) Method.invoke(Object, Object...)
– returns an Object
containing the result of invoking the method for the instance of the first Object
parameter passed to invoke()
. The remaining Object...
parameters are passed to the method. (If the Method
object represents a static method then the first Object
parameter is ignored and may be null
.) Constructor.newInstance(Object...)
– returns the new Object
instance from invoking the constructor. The Object...
parameters are passed to the constructor. (Note that the parameterless constructor for a class can also be invoked by calling newInstance()
.)The java.lang.reflect
package also provides an Array
class that contains static methods for creating and manipulating array objects, and since J2SE 1.3, a Proxy
class that supports dynamic creation of proxy classes that implement specified interfaces.
The implementation of a Proxy
class is provided by a supplied object that implements the InvocationHandler
interface. The InvocationHandler
's invoke(Object, Method, Object[])
method is called for each method invoked on the proxy object—the first parameter is the proxy object, the second parameter is the Method
object representing the method from the interface implemented by the proxy, and the third parameter is the array of parameters passed to the interface method. The invoke()
method returns an Object
result that contains the result returned to the code that called the proxy interface method.
The java.io
package contains classes that support input and output. The classes in the package are primarily stream-oriented; however, a class for random access files is also provided. The central classes in the package are InputStream
and OutputStream
, which are abstract base classes for reading from and writing to byte streams, respectively. The related classes Reader
and Writer
are abstract base classes for reading from and writing to character streams, respectively. The package also has a few miscellaneous classes to support interactions with the host file system.
The stream classes follow the decorator pattern by extending the base subclass to add features to the stream classes. Subclasses of the base stream classes are typically named for one of the following attributes:
The stream subclasses are named using the naming pattern XxxStreamType
where Xxx
is the name describing the feature and StreamType
is one of InputStream
, OutputStream
, Reader
, or Writer
.
The following table shows the sources/destinations supported directly by the java.io
package:
Source/Destination | Name | Stream types | In/out | Classes |
---|---|---|---|---|
byte array (byte[] ) | ByteArray | byte | in, out | ByteArrayInputStream , ByteArrayOutputStream |
char array (char[] ) | CharArray | char | in, out | CharArrayReader , CharArrayWriter |
file | File | byte , char | in, out | FileInputStream , FileOutputStream , FileReader , FileWriter |
string ( StringBuffer ) | String | char | in, out | StringReader , StringWriter |
thread (Thread ) | Piped | byte , char | in, out | PipedInputStream , PipedOutputStream , PipedReader , PipedWriter |
Other standard library packages provide stream implementations for other destinations, such as the InputStream
returned by the java.net.Socket.getInputStream()
method or the Java EE javax.servlet.ServletOutputStream
class.
Data type handling and processing or filtering of stream data is accomplished through stream filters. The filter classes all accept another compatible stream object as a parameter to the constructor and decorate the enclosed stream with additional features. Filters are created by extending one of the base filter classes FilterInputStream
, FilterOutputStream
, FilterReader
, or FilterWriter
.
The Reader
and Writer
classes are really just byte streams with additional processing performed on the data stream to convert the bytes to characters. They use the default character encoding for the platform, which as of J2SE 5.0 is represented by the Charset
returned by the java.nio.charset.Charset.defaultCharset()
static method. The InputStreamReader
class converts an InputStream
to a Reader
and the OutputStreamWriter
class converts an OutputStream
to a Writer
. Both these classes have constructors that support specifying the character encoding to use. If no encoding is specified, the program uses the default encoding for the platform.
The following table shows the other processes and filters that the java.io
package directly supports. All these classes extend the corresponding Filter
class.
Operation | Name | Stream types | In/out | Classes |
---|---|---|---|---|
buffering | Buffered | byte , char | in, out | BufferedInputStream , BufferedOutputStream , BufferedReader , BufferedWriter |
"push back" last value read | Pushback | byte , char | in | PushbackInputStream , PushbackReader |
read/write primitive types | Data | byte | in, out | DataInputStream , DataOutputStream |
object serialization (read/write objects) | Object | byte | in, out | ObjectInputStream , ObjectOutputStream |
The RandomAccessFile
class supports random access reading and writing of files. The class uses a file pointer that represents a byte-offset within the file for the next read or write operation. The file pointer is moved implicitly by reading or writing and explicitly by calling the seek(long)
or skipBytes(int)
methods. The current position of the file pointer is returned by the getFilePointer()
method.
The File
class represents a file or directory path in a file system. File
objects support the creation, deletion and renaming of files and directories and the manipulation of file attributes such as read-only and last modified timestamp. File
objects that represent directories can be used to get a list of all the contained files and directories.
The FileDescriptor
class is a file descriptor that represents a source or sink (destination) of bytes. Typically this is a file, but can also be a console or network socket. FileDescriptor
objects are used to create File
streams. They are obtained from File
streams and java.net
sockets and datagram sockets.
In J2SE 1.4, the package java.nio
(NIO or Non-blocking I/O) was added to support memory-mapped I/O, facilitating I/O operations closer to the underlying hardware with sometimes dramatically better performance. The java.nio
package provides support for a number of buffer types. The subpackage java.nio.charset
provides support for different character encodings for character data. The subpackage java.nio.channels
provides support for channels, which represent connections to entities that are capable of performing I/O operations, such as files and sockets. The java.nio.channels
package also provides support for fine-grained locking of files.
The java.math
package supports multiprecision arithmetic (including modular arithmetic operations) and provides multiprecision prime number generators used for cryptographic key generation. The main classes of the package are:
BigDecimal
– provides arbitrary-precision signed decimal numbers. BigDecimal
gives the user control over rounding behavior through RoundingMode
. BigInteger
– provides arbitrary-precision integers. Operations on BigInteger
do not overflow or lose precision. In addition to standard arithmetic operations, it provides modular arithmetic, GCD calculation, primality testing, prime number generation, bit manipulation, and other miscellaneous operations. MathContext
– encapsulate the context settings that describe certain rules for numerical operators. RoundingMode
– an enumeration that provides eight rounding behaviors.The java.net
package provides special IO routines for networks, allowing HTTP requests, as well as other common transactions.
The java.text
package implements parsing routines for strings and supports various human-readable languages and locale-specific parsing.
Data structures that aggregate objects are the focus of the java.util
package. Included in the package is the Collections API, an organized data structure hierarchy influenced heavily by the design patterns considerations.
Created to support Java applet creation, the java.applet
package lets applications be downloaded over a network and run within a guarded sandbox. Security restrictions are easily imposed on the sandbox. A developer, for example, may apply a digital signature to an applet, thereby labeling it as safe. Doing so allows the user to grant the applet permission to perform restricted operations (such as accessing the local hard drive), and removes some or all the sandbox restrictions. Digital certificates are issued by certificate authorities.
Included in the java.beans
package are various classes for developing and manipulating beans, reusable components defined by the JavaBeans architecture. The architecture provides mechanisms for manipulating properties of components and firing events when those properties change.
The APIs in java.beans
are intended for use by a bean editing tool, in which beans can be combined, customized, and manipulated. One type of bean editor is a GUI designer in an integrated development environment.
The java.awt
, or Abstract Window Toolkit, provides access to a basic set of GUI widgets based on the underlying native platform's widget set, the core of the GUI event subsystem, and the interface between the native windowing system and the Java application. It also provides several basic layout managers, a datatransfer package for use with the Clipboard and Drag and Drop, the interface to input devices such as mice and keyboards, as well as access to the system tray on supporting systems. This package, along with javax.swing
contains the largest number of enums (7 in all) in JDK 6.
The java.rmi
package provides Java remote method invocation to support remote procedure calls between two java applications running in different JVMs.
Support for security, including the message digest algorithm, is included in the java.security
package.
An implementation of the JDBC API (used to access SQL databases) is grouped into the java.sql
package.
The javax.rmi
package provided support for the remote communication between applications, using the RMI over IIOP protocol. This protocol combines RMI and CORBA features.
Swing is a collection of routines that build on java.awt
to provide a platform independent widget toolkit. javax.swing
uses the 2D drawing routines to render the user interface components instead of relying on the underlying native operating system GUI support.
This package contains the largest number of classes (133 in all) in JDK 6. This package, along with java.awt
also contains the largest number of enums (7 in all) in JDK 6. It supports pluggable looks and feels (PLAFs) so that widgets in the GUI can imitate those from the underlying native system. Design patterns permeate the system, especially a modification of the model–view–controller pattern, which loosens the coupling between function and appearance. One inconsistency is that (as of J2SE 1.3) fonts are drawn by the underlying native system, and not by Java, limiting text portability. Workarounds, such as using bitmap fonts, do exist. In general, "layouts" are used and keep elements within an aesthetically consistent GUI across platforms.
The javax.swing.text.html.parser
package provides the error tolerant HTML parser that is used for writing various web browsers and web bots.
The javax.xml.bind.annotation
package contained the largest number of Annotation Types (30 in all) in JDK 6. It defines annotations for customizing Java program elements to XML Schema mapping.
The org.omg.CORBA
package provided support for the remote communication between applications using the General Inter-ORB Protocol and supports other features of the common object request broker architecture. Same as RMI and RMI-IIOP, this package is for calling remote methods of objects on other virtual machines (usually via network).
This package contained the largest number of Exception
classes (45 in all) in JDK 6. From all communication possibilities CORBA is portable between various languages; however, with this comes more complexity.
These packages were deprecated in Java 9 and removed from Java 11. [7]
The org.omg.PortableInterceptor
package contained the largest number of interfaces (39 in all) in JDK 6. It provides a mechanism to register ORB hooks through which ORB services intercept the normal flow of execution of the ORB.
Several critical security vulnerabilities have been reported. [8] [9] Security alerts from Oracle announce critical security-related patches to Java SE. [10]
Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax of Java is similar to C and C++, but has fewer low-level facilities than either of them. The Java runtime provides dynamic capabilities that are typically not available in traditional compiled languages.
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.
The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java software clients to discover and look up data and resources via a name. Like all Java APIs that interface with host systems, JNDI is independent of the underlying implementation. Additionally, it specifies a service provider interface (SPI) that allows directory service implementations to be plugged into the framework. The information looked up via JNDI may be supplied by a server, a flat file, or a database; the choice is up to the implementation used.
Java and C++ are two prominent object-oriented programming languages. By many language popularity metrics, the two languages have dominated object-oriented and high-performance software development for much of the 21st century, and are often directly compared and contrasted. Java's syntax was based on C/C++.
The Java Remote Method Invocation is a Java API that performs remote method invocation, the object-oriented equivalent of remote procedure calls (RPC), with support for direct transfer of serialized Java classes and distributed garbage-collection.
In computing, the Java API for XML Processing (JAXP), one of the Java XML application programming interfaces (APIs), provides the capability of validating and parsing XML documents. It has three basic parsing interfaces:
Swing is a GUI widget toolkit for Java. It is part of Oracle's Java Foundation Classes (JFC) – an API for providing a graphical user interface (GUI) for Java programs.
The Connected Limited Device Configuration (CLDC) is a specification of a framework for Java ME applications describing the basic set of libraries and virtual-machine features that must be present in an implementation. The CLDC is combined with one or more profiles to give developers a platform for building applications on embedded devices with very limited resources such as pagers and mobile phones. The CLDC was developed under the Java Community Process as JSR 30 and JSR 139.
This article compares two programming languages: C# with Java. While the focus of this article is mainly the languages and their features, such a comparison will necessarily also consider some features of platforms and libraries.
The syntax of Java is the set of rules defining how a Java program is written and interpreted.
java.nio is a collection of Java programming language APIs that offer features for intensive I/O operations. It was introduced with the J2SE 1.4 release of Java by Sun Microsystems to complement an existing standard I/O. NIO was developed under the Java Community Process as JSR 51. An extension to NIO that offers a new file system API, called NIO.2, was released with Java SE 7 ("Dolphin").
In the Java computer programming language, an annotation is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, parameters and Java packages may be annotated. Like Javadoc tags, Java annotations can be read from source files. Unlike Javadoc tags, Java annotations can also be embedded in and read from Java class files generated by the Java compiler. This allows annotations to be retained by the Java virtual machine at run-time and read via reflection. It is possible to create meta-annotations out of the existing ones in Java.
The Java collections framework is a set of classes and interfaces that implement commonly reusable collection data structures.
Java is a set of computer software and specifications that provides a software platform for developing application software and deploying it in a cross-platform computing environment. Java is used in a wide variety of computing platforms from embedded devices and mobile phones to enterprise servers and supercomputers. Java applets, which are less common than standalone Java applications, were commonly run in secure, sandboxed environments to provide many features of native applications through being embedded in HTML pages.
The Java language has undergone several changes since JDK 1.0 as well as numerous additions of classes and packages to the standard library. Since J2SE 1.4, the evolution of the Java language has been governed by the Java Community Process (JCP), which uses Java Specification Requests (JSRs) to propose and specify additions and changes to the Java platform. The language is specified by the Java Language Specification (JLS); changes to the JLS are managed under JSR 901. In September 2017, Mark Reinhold, chief Architect of the Java Platform, proposed to change the release train to "one feature release every six months" rather than the then-current two-year schedule. This proposal took effect for all following versions, and is still the current release schedule.
The Java programming language and the Java virtual machine (JVM) is designed to support concurrent programming. All execution takes place in the context of threads. Objects and resources can be accessed by many separate threads. Each thread has its own path of execution, but can potentially access any object in the program. The programmer must ensure read and write access to objects is properly coordinated between threads. Thread synchronization ensures that objects are modified by only one thread at a time and prevents threads from accessing partially updated objects during modification by another thread. The Java language has built-in constructs to support this coordination.
The Java Class Library (JCL) is a set of dynamically loadable libraries that Java Virtual Machine (JVM) languages can call at run time. Because the Java Platform is not dependent on a specific operating system, applications cannot rely on any of the platform-native libraries. Instead, the Java Platform provides a comprehensive set of standard class libraries, containing the functions common to modern operating systems.
This comparison of programming languages compares how object-oriented programming languages such as C++, Java, Smalltalk, Object Pascal, Perl, Python, and others manipulate data structures.
Java Database Connectivity (JDBC) is an application programming interface (API) for the Java programming language which defines how a client may access a database. It is a Java-based data access technology used for Java database connectivity. It is part of the Java Standard Edition platform, from Oracle Corporation. It provides methods to query and update data in a database, and is oriented toward relational databases. A JDBC-to-ODBC bridge enables connections to any ODBC-accessible data source in the Java virtual machine (JVM) host environment.