Karen Vousden | |
---|---|
Born | [1] | 19 July 1957
Alma mater | Queen Mary and Westfield College [1] |
Known for | Work on p53 tumour suppressor protein [2] [3] and Mdm2 protein [4] |
Spouse | Robert Ludwig (m. 1986) |
Awards | |
Scientific career | |
Fields | Cancer [6] [7] |
Institutions | |
Thesis | Use of suppressor gene mutations to study transfer RNA redundancy in Coprinus (1982) |
Karen Heather Vousden (born 19 July 1957) [1] is a British medical researcher. She is known for her work on the tumour suppressor protein, p53, and in particular her discovery of the important regulatory role of Mdm2, an attractive target for anti-cancer agents. From 2003 to 2016, she was the director of the Cancer Research UK Beatson Institute in Glasgow, UK, moving back to London in 2016 to take up the role of Chief Scientist at CRUK and Group Leader at the Francis Crick Institute.
After attending Gravesend Grammar School for Girls,[ citation needed ] Vousden gained a Bachelor of Science degree in genetics and microbiology (1978) and a PhD from Queen Mary College, University of London on the use of suppressor gene mutations to study transfer RNA redundancy in the fungus Coprinus . [8] [9] [10] [11]
Vousden's early postdoctoral research positions were with Chris Marshall [12] at the Institute of Cancer Research, London, UK (1981–85) and Douglas Lowy [13] at the National Cancer Institute, Bethesda, United States (1985–87). [8] [14]
From 1987 to 1995, she led the Human Papillomavirus Group at the Ludwig Institute for Cancer Research, London, UK. [8] [14] In 1995, she joined the National Cancer Institute in Frederick, USA, [14] serving successively as head of the Molecular Carcinogenesis section of the ABL-Basic Research Program (1995–97), director of the Molecular Virology and Carcinogenesis Laboratory (1997–98), interim director of the ABL-Basic Research Program (1998–99) and chief of the Regulation of Cell Growth Laboratory, Division of Basic Sciences (1999–2002). [8] [10]
From 2003 to 2016, she was the director of the Cancer Research UK Beatson Institute in Glasgow, UK, where she oversaw a £15 million expansion. [14] [15] [16] She also led the institute's Tumour Suppression research group. [17] She also served on the Life Sciences jury for the Infosys Prize in 2014.
Since 2016, she has moved back to London to take up the role of CRUK Chief Scientist and Group Leader at the Francis Crick Institute. [18] In 2018, she was elected a foreign associate of the National Academy of Sciences.
Vousden's early work focused on the molecular biology of human papillomaviruses (HPVs), which are associated with cervical cancer. With Douglas Lowy and others, she pinpointed the specific viral oncoproteins required by HPV-16 to immortalise epithelial cells. [19] She was also part of a group which showed that E6, one of the HPV-16 oncoproteins, binds to the human tumour suppressor protein p53 in vivo, resulting in its degradation. [20]
Vousden's recent research has centred on p53, [21] a gene which plays a critical role in preventing the development of tumours by inducing cells subject to stress, such as DNA damage, to commit suicide via the apoptosis mechanism. Her work has been important in delineating the mechanism of this process. With Katsunori Nakano, she discovered a key component in the apoptosis pathway triggered by p53, the protein PUMA (P53 Upregulated Modulator of Apoptosis). [22] [23]
To prevent it being activated inappropriately, p53 is strictly controlled in the normal cell. Vousden discovered that a key element in this regulation is the protein Mdm2. With Allan Weissman and others, she showed that Mdm2 is a ubiquitin ligase which targets p53 for degradation by the proteasome, thus ensuring levels of the protein remain low when the cell is not under stress. [4] [24] [25]
Reactivating p53 can inhibit the growth of some tumours, making Mdm2 an attractive target for cancer therapeutics. As Mdm2 targets only a small number of proteins for destruction, an inhibitor might have few side effects. [24] A major focus of Vousden's recent work has been investigating the structure of Mdm2 and seeking molecules that inhibit it; a group of low-molecular-weight compounds (discovered in collaboration with the Department of Chemistry at the University of Glasgow) have recently shown promise in cell-culture studies. [24] [26] Mdm2 inhibitors have also been discovered by researchers at Hoffmann–La Roche and the Karolinska Institute. [24]
p53 can also help to prevent or repair minor damage to the genome under conditions of low stress. Vousden's group have recently discovered a novel p53-regulated protein, TIGAR (T-p53 Inducible Glycolysis and Apoptosis Regulator), which can reduce oxidative stress in cells and might mediate part of this effect of p53. [27]
Vousden is a fellow of the Royal Society (2003), [21] Royal Society of Edinburgh (2004) [5] and the Academy of Medical Sciences (2006); [28] she was also elected a member of the European Molecular Biology Organization in 2004. [29] The Institute of Cancer Research awarded her an Honorary Doctorate in Science (Medicine) in 2006. [30] She gave the Sir Frederick Gowland Hopkins Memorial Lecture of the Biochemical Society in 2008. [31] She was awarded the Royal Medal from the Royal Society of Edinburgh in 2009. Vousden was appointed Commander of the Order of the British Empire (CBE) in the 2010 New Year Honours. [32]
In 2004, The Scotsman named Vousden among the 25 most powerful Scottish women. [9]
In 2021, Karen Vousden was recognized with the first Pezcoller Foundation-Marina Larcher Fogazzaro-EACR Women in Cancer Award.
p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.
p73 is a protein related to the p53 tumor protein. Because of its structural resemblance to p53, it has also been considered a tumor suppressor. It is involved in cell cycle regulation, and induction of apoptosis. Like p53, p73 is characterized by the presence of different isoforms of the protein. This is explained by splice variants, and an alternative promoter in the DNA sequence.
Mouse double minute 2 homolog (MDM2) also known as E3 ubiquitin-protein ligase Mdm2 is a protein that in humans is encoded by the MDM2 gene. Mdm2 is an important negative regulator of the p53 tumor suppressor. Mdm2 protein functions both as an E3 ubiquitin ligase that recognizes the N-terminal trans-activation domain (TAD) of the p53 tumor suppressor and as an inhibitor of p53 transcriptional activation.
p14ARF is an alternate reading frame protein product of the CDKN2A locus. p14ARF is induced in response to elevated mitogenic stimulation, such as aberrant growth signaling from MYC and Ras (protein). It accumulates mainly in the nucleolus where it forms stable complexes with NPM or Mdm2. These interactions allow p14ARF to act as a tumor suppressor by inhibiting ribosome biogenesis or initiating p53-dependent cell cycle arrest and apoptosis, respectively. p14ARF is an atypical protein, in terms of its transcription, its amino acid composition, and its degradation: it is transcribed in an alternate reading frame of a different protein, it is highly basic, and it is polyubiquinated at the N-terminus.
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.
Promyelocytic leukemia protein (PML) is the protein product of the PML gene. PML protein is a tumor suppressor protein required for the assembly of a number of nuclear structures, called PML-nuclear bodies, which form amongst the chromatin of the cell nucleus. These nuclear bodies are present in mammalian nuclei, at about 1 to 30 per cell nucleus. PML-NBs are known to have a number of regulatory cellular functions, including involvement in programmed cell death, genome stability, antiviral effects and controlling cell division. PML mutation or loss, and the subsequent dysregulation of these processes, has been implicated in a variety of cancers.
Ras association domain-containing protein 1 is a protein that in humans is encoded by the RASSF1 gene.
Tumor suppressor p53-binding protein 1 also known as p53-binding protein 1 or 53BP1 is a protein that in humans is encoded by the TP53BP1 gene.
DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.
E3 SUMO-protein ligase PIAS1 is an enzyme that in humans is encoded by the PIAS1 gene.
Inhibitor of growth protein 1 is a protein that in humans is encoded by the ING1 gene.
Polyubiquitin-C is a protein encoded by the UBC gene in humans. Polyubiquitin-C is one of the sources of ubiquitin, along with UBB, UBA52, and RPS27A.
Mediator of DNA damage checkpoint protein 1 is a 2080 amino acid long protein that in humans is encoded by the MDC1 gene located on the short arm (p) of chromosome 6. MDC1 protein is a regulator of the Intra-S phase and the G2/M cell cycle checkpoints and recruits repair proteins to the site of DNA damage. It is involved in determining cell survival fate in association with tumor suppressor protein p53. This protein also goes by the name Nuclear Factor with BRCT Domain 1 (NFBD1).
60S ribosomal protein L11 is a protein that in humans is encoded by the RPL11 gene.
Cyclin-G1 is a protein that in humans is encoded by the CCNG1 gene.
CDKN2A, also known as cyclin-dependent kinase inhibitor 2A, is a gene which in humans is located at chromosome 9, band p21.3. It is ubiquitously expressed in many tissues and cell types. The gene codes for two proteins, including the INK4 family member p16 and p14arf. Both act as tumor suppressors by regulating the cell cycle. p16 inhibits cyclin dependent kinases 4 and 6 and thereby activates the retinoblastoma (Rb) family of proteins, which block traversal from G1 to S-phase. p14ARF activates the p53 tumor suppressor. Somatic mutations of CDKN2A are common in the majority of human cancers, with estimates that CDKN2A is the second most commonly inactivated gene in cancer after p53. Germline mutations of CDKN2A are associated with familial melanoma, glioblastoma and pancreatic cancer. The CDKN2A gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
F-box only protein 31 is a protein that in humans is encoded by the FBXO31 gene.
In molecular biology mir-605 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.
The TP53-inducible glycolysis and apoptosis regulator (TIGAR) also known as fructose-2,6-bisphosphatase TIGAR is an enzyme that in humans is encoded by the C12orf5 gene.
Owen Sansom, FRSE., FMedSci is the Director of the Cancer Research UK Beatson Institute. He is known for his work determining the molecular hallmarks of colorectal cancer (CRC), including demonstrating the roles of the tumour suppressor protein APC and the WNT signalling pathway, as well as the involvement of intestinal stem cells in tumourigenesis