![]() | |
Type | Public |
---|---|
Established | 1909 [1] |
Endowment | £1.56 million (2022) [2] |
Budget | £161.2 million (2021-12) [2] |
Chairman | Julia Buckingham CBE [3] |
Chancellor | The Princess Royal (University of London) |
Chief Executive | Kristian Helin [4] |
Administrative staff | 1,075 (2011 average) [1] |
Students | 280 (2019/20) [5] |
Undergraduates | (2019/20) [5] |
Postgraduates | 280 (2019/20) [5] |
Location | , |
Campus | Urban |
Student population rank | 210th (of 169) |
Affiliations | University of London |
Website | www |
The Institute of Cancer Research (the ICR) is a public research institute and a member institution of the University of London in London, United Kingdom, specialising in oncology. [6] It was founded in 1909 as a research department of the Royal Marsden Hospital and joined the University of London in 2003. [7] It has been responsible for a number of breakthrough discoveries, including that the basic cause of cancer is damage to DNA. [8]
The ICR occupies sites in Chelsea, Central London and Sutton, southwest London. The ICR provides both taught postgraduate degree programmes and research degrees and currently has around 340 students. Together with the Royal Marsden Hospital the ICR forms the largest comprehensive cancer centre in Europe, [9] and was ranked second amongst all British higher education institutions in the Times Higher Education's assessment of the 2021 Research Excellence Framework. [10] In clinical medicine, 97% and in biological sciences, 99% of the ICR's academic research was assessed to be world leading or internationally excellent (4* or 3*). [11]
The annual income of the institution for 2021–22 was £161.2 million of which £64.1 million was from research grants and contracts, with an expenditure of £163.5 million. [2] The ICR receives its external grant funding from the government body the Higher Education Funding Council for England, from government research council bodies and from charities including the Wellcome Trust, Cancer Research UK, Breast Cancer Now and Bloodwise. It also receives voluntary income from legacies and from public and corporate donations. The ICR also runs a number of fundraising appeals and campaigns which help support a variety of cancer research projects. [12]
![]() | This section needs expansion. You can help by adding to it. (January 2013) |
The ICR occupies two sites in Chelsea, Central London which include the Chester Beatty Laboratories and the ICR corporate offices. A third site in Sutton, Southwest London, houses more research facilities. The location of the two research sites reflects the two sites of the Royal Marsden Hospital.
The ICR pursues its research focused into three main research themes: genetic epidemiology, molecular pathology, and therapeutic development. These areas of research are essential for the development of personalised cancer medicine.
Towards this aim, the ICR and The Royal Marsden have completed a dedicated £17 million Centre for Molecular Pathology (CMP) which opened on the Sutton site on 20 November 2012. [13] The centre exploits the increasing availability of information about the genetic make-up of different cancer types, in order to design new "personalised" treatments that target cancers' specific molecular defects. The CMP also aims to develop molecular diagnostic techniques that will accurately predict who will benefit most from a treatment, ensuring a patient receives the optimum drug(s) for the best possible outcome. The CMP will build on the organisations' existing expertise in breast, prostate and paediatric cancers, while providing opportunities for new developments in other cancers such as gastrointestinal, renal, gynaecological, melanoma, head & neck cancers and sarcomas.
In March 2016, the ICR opened a £20 million Centre for Cancer Imaging that brings together experts in a range of different imaging techniques working together to develop better cancer diagnostic and treatment techniques. [14]
The organisation's research direction is set out in the ICR Scientific Strategy 2010–2015, which aims to develop key research areas while enhancing partnership affiliations. Its four objectives are to maintain, develop and exploit the unique relationship with the Marsden; to ensure a balanced portfolio of basic and applied research; to develop treatment regimes to the genetic makeup of patient and tumour (personalised medicine) and to recruit, retain and motivate the best staff. [15]
The ICR runs an MSc in Oncology programme, which is a modular course aimed primarily at Specialist Registrars in Clinical and Medical Oncology. [1] The course has exit points at Certificate, Diploma and MSc degree level. [1]
The ICR was founded in 1909, when a new laboratory building adjoining The Cancer Hospital (later named the Royal Marsden Hospital) was established with Alexander Paine as its first director. [7] In 1910 Robert Knox was appointed to head the Electrical and Radio-therapeutic Department at The Cancer Hospital and established the first professionally designed X-ray Department for treatment and diagnosis in Britain. The Cancer Hospital Research Institute was officially opened by Prince Arthur, the Duke of Connaught, in 1911. In 1921 Archibald Leitch was appointed director of The Cancer Hospital Research Institute. The institute became a postgraduate School of the University of London in 1927. [7] In 1931 Sir Ernest Kennaway FRS became director of the institute. In 1932 a research team led by Kennaway fractionated coal tar and isolated benzo[a]pyrene, which he identified as one of the chemical constituents that induced cancer in mice. These were the first research findings to show that a pure chemical substance can cause cancer. In 1936 Kennaway proposed the potential of a link between smoking and lung cancer. The Cancer Hospital Research Institute moved to a new site on Fulham Road in Chelsea in 1939 and was renamed the Chester Beatty Research Institute.
In 1946 Sir Alexander Haddow FRS FRSE (1907-1976) became the director of the Chester Beatty Research Institute. He remained in the role until 1969, [16] In 1947, while conducting research at the institute, David Galton became the first physician in the world to use aminopterin (the forerunner of the methotrexate drug) in the treatment of adult leukaemia, producing remission in some cancer patients. [7]
During the 1940s Haddow established a Clinical Chemotherapy Research Unit – the first such unit in Europe – in partnership with the Royal Marsden Hospital and under Galton's leadership. The partnership was unique at the time in being able to take the drug discoveries directly into a partner hospital for clinical trials in cancer patients. The unit led to the institute's discovery of three successful chemotherapy drugs in the 1950s: busulphan (Myleran), chlorambucil (Leukeran) and melphalan (Alkeran). [7]
In 1952 the ICR's Eric Boyland had proposed that certain chemicals that cause cancer (carcinogens) react with DNA through an alkylation mechanism that damaged the DNA molecule. In follow-up research at the ICR in 1964, Professors Peter Brookes and Philip Lawley proved that chemical carcinogens act by damaging DNA, leading to mutations and the formation of tumours, proving that cancer is a genetic disease based on mutational events. [7]
In 1954 the institute was officially renamed The Institute of Cancer Research (ICR). The ICR established a second campus in Sutton, Surrey in 1956. Whilst working at the ICR in 1961, Jacques Miller discovered the immunological role of the thymus, as the repository of a special class of lymphocytes (T cells) essential for the mounting of an immune response.
Scientists at the ICR were instrumental in the development of one of the world's most widely used anti-cancer drugs, carboplatin (Paraplatin). [17] Carboplatin's development began in 1970 after scientists in the United States discovered that the platinum-based compound cisplatin was effective against many tumours – but had serious side-effects. A team of ICR and RMH scientists and clinicians including Professors Kenneth Harrap and Tom Connors, Hilary Calvert and Hospital Consultant Eve Wiltshaw recognised its potential but also the need for a less toxic alternative. [18] In collaboration with the chemical and precious metal company Johnson Matthey plc the ICR scientists evaluated some 300 different platinum-containing molecules and developed a series of second-generation compounds, of which carboplatin was selected as the lead. The first clinical trial of carboplatin was carried out in 1981 and it was launched commercially as Parplatin (manufactured by Bristol-Myers) in 1986. [19] As of 2012 carboplatin is in use for a range of cancers including ovarian and lung. For the development of these platinum-based anticancer drugs the ICR, together with The Royal Marsden Hospital and Johnson Matthey plc, received the Queen's Award for Technological Achievement in 1991.
During the 1980s ICR scientists including Professors Hilary Calvert, and Ken Harrap and Ann Jackman developed raltitrexed (Tomudex) at the ICR, a drug active for the treatment of colon and other cancers. In 1983 research teams at the Chester Beatty Laboratory of the ICR led by Professors Chris Marshall FRS and Alan Hall FRS discovered N-RAS, one of the first human cancer transforming genes (oncogenes). Alan Hall went on in 1992 to discover that the molecular mechanism for the motility behaviour of animal cells (cell to cell attachment and cell movement) is through control of cytoskeletal assembly by specific GTPase-proteins, known as Rho and Rac. The discovery is of fundamental significance in cancer research since cell motility is a key feature of cancer cell behaviour during metastasis (the spread of tumours around the human body).
In 1994 an ICR team led by Michael Stratton discovered the gene BRCA2, which has been linked to breast cancer, prostate cancer and ovarian cancer. [20] [21] [22] [23] [24] Alan Ashworth's team in the Breakthrough Breast Cancer Research Centre at the ICR established the connection between mutations in the BRCA2 gene and the operation of DNA repair pathways in cancer cells. This later led to the development of a PARP inhibitor drug, olaparib, which targets the DNA repair pathways of cancer cells. [25] A Phase I trial of olaparib found in June 2009 that tumours shrank or stabilised for more than half of patients with BRCA1 and BRCA2 mutations. [26] It is believed that the drug may also be useful in other patients whose cancer it is linked to an error in their DNA repair pathway. [27]
In 1999 the Chester Beatty Laboratory in Chelsea was redeveloped and extended to incorporate the Breakthrough Toby Robins Breast Cancer Research Centre, which was opened by the Prince of Wales in 1999. [7]
In 2000 Michael Stratton at the ICR initiated the Cancer Genome Project, which was aimed at capitalizing on the knowledge from the Human Genome sequence to screen all human genes in cancer cells to identify those genes responsible for specific cancers. The project was established at the genome sequencing facilities of the Wellcome Trust Sanger Institute near Cambridge, of which Stratton is now the director. One of the first major achievements of the Cancer Genome Project has been the characterisation of the cancer gene BRAF in collaboration with ICR scientists Professors Chris Marshall and Richard Marais. The research by the ICR team, published in June 2002, revealed that damage to the BRAF gene could cause up to 70 per cent of melanoma skin cancers. [28] [29] This has been instrumental in speeding up the development of new drugs for the treatment of malignant melanoma. Since 2002 the ICR has been working to develop drugs that inhibit BRAF in melanoma and other cancers where the gene is defective. [30]
In the five years from 2004/05, the ICR developed on average two drug development candidates per year. Since 2006, it has licensed three novel series of anti-cancer drugs to major pharmaceutical companies: Hsp90 inhibitors to Novartis, PKB inhibitors to AstraZeneca and PI3Kinase inhibitors to Genentech. The PIl3Kinase inhibitor GDC-0941, licensed to Genentech by Piramed, is thought to have potential in a range of human cancers. In laboratory experiments, ICR scientists found that the drug reduced the growth of glioblastoma (the most common form of brain tumour), it decreased the growth of ovarian tumours and in other studies, it was active against cell lines derived from other human cancers. [31]
In conjunction with The Royal Marsden NHS Foundation Trust, the ICR tested a promising new prostate cancer drug called abiraterone, which it discovered and developed. [32] A randomised placebo-controlled Phase III trial reported in October 2010 that abiraterone could extend survival in some men with late stage prostate cancer. [33] The trial, funded by Janssen Pharmaceutical Companies, included 1,195 patients from 13 countries whose advanced prostate cancer had stopped responding to standard therapies. Abiraterone extended the average overall survival of patients from 10.9 months to 14.8 months compared to a placebo, without many of the unpleasant side-effects associated with conventional chemotherapy. The FDA in April 2011 approved the drug for sale in the US under the trade name Zytiga. [34]
Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene and is responsible for repairing DNA.
Ovarian cancer is a cancerous tumor of an ovary. It may originate from the ovary itself or more commonly from communicating nearby structures such as fallopian tubes or the inner lining of the abdomen. The ovary is made up of three different cell types including epithelial cells, germ cells, and stromal cells. When these cells become abnormal, they have the ability to divide and form tumors. These cells can also invade or spread to other parts of the body. When this process begins, there may be no or only vague symptoms. Symptoms become more noticeable as the cancer progresses. These symptoms may include bloating, vaginal bleeding, pelvic pain, abdominal swelling, constipation, and loss of appetite, among others. Common areas to which the cancer may spread include the lining of the abdomen, lymph nodes, lungs, and liver.
BRCA2 and BRCA2 are a human gene and its protein product, respectively. The official symbol and the official name are maintained by the HUGO Gene Nomenclature Committee. One alternative symbol, FANCD1, recognizes its association with the FANC protein complex. Orthologs, styled Brca2 and Brca2, are common in other vertebrate species. BRCA2 is a human tumor suppressor gene, found in all humans; its protein, also called by the synonym breast cancer type 2 susceptibility protein, is responsible for repairing DNA.
Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.
Olaparib, sold under the brand name Lynparza, is a medication for the maintenance treatment of BRCA-mutated advanced ovarian cancer in adults. It is a PARP inhibitor, inhibiting poly ADP ribose polymerase (PARP), an enzyme involved in DNA repair. It acts against cancers in people with hereditary BRCA1 or BRCA2 mutations, which include some ovarian, breast, and prostate cancers.
PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP).
Cancer can be treated by surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy and synthetic lethality, most commonly as a series of separate treatments. The choice of therapy depends upon the location and grade of the tumor and the stage of the disease, as well as the general state of the patient. Cancer genome sequencing helps in determining which cancer the patient exactly has for determining the best therapy for the cancer. A number of experimental cancer treatments are also under development. Under current estimates, two in five people will have cancer at some point in their lifetime.
Alan Ashworth, FRS is a British molecular biologist, noted for his work on genes involved in cancer susceptibility. He is currently the President of the UCSF Helen Diller Family Comprehensive Cancer Center at the University of California, San Francisco, a multidisciplinary research and clinical care organisation that is one of the largest cancer centres in the Western United States. He was previously CEO of the Institute of Cancer Research (ICR) in London.
A BRCA mutation is a mutation in either of the BRCA1 and BRCA2 genes, which are tumour suppressor genes. Hundreds of different types of mutations in these genes have been identified, some of which have been determined to be harmful, while others have no proven impact. Harmful mutations in these genes may produce a hereditary breast–ovarian cancer syndrome in affected persons. Only 5–10% of breast cancer cases in women are attributed to BRCA1 and BRCA2 mutations, but the impact on women with the gene mutation is more profound. Women with harmful mutations in either BRCA1 or BRCA2 have a risk of breast cancer that is about five times the normal risk, and a risk of ovarian cancer that is about ten to thirty times normal. The risk of breast and ovarian cancer is higher for women with a high-risk BRCA1 mutation than with a BRCA2 mutation. Having a high-risk mutation does not guarantee that the woman will develop any type of cancer, or imply that any cancer that appears was actually caused by the mutation, rather than some other factor.
Sir Michael Rudolf Stratton, is a British clinical scientist and the third director of the Wellcome Trust Sanger Institute. He currently heads the Cancer Genome Project and is a leader of the International Cancer Genome Consortium.
Sir Bruce Anthony John Ponder FMedSci FAACR FRS is an English geneticist and cancer researcher. He is Emeritus Professor of Oncology at the University of Cambridge and former director of the Cancer Research UK Cambridge Institute and of the Cancer Research UK Cambridge Cancer Centre.
A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies. In some cases, cancers can evolve resistance to multiple drugs, called multiple drug resistance.
A cancer syndrome, or family cancer syndrome, is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.
Ashok Venkitaraman is a British cancer researcher of Indian origin. He is the Director of the Cancer Science Institute of Singapore, a Distinguished Professor of Medicine at the National University of Singapore, and Program Director at A*STAR, Singapore. From 1998-2020, he was the inaugural holder of the Ursula Zoellner Professorship of Cancer Research at the University of Cambridge, a Professorial Fellow at Pembroke College, Cambridge, and from 2006–19, was the Director of the Medical Research Council Cancer Unit
GT198 is a human oncogene located within the BRCA1 locus at chromosome 17q21. It encodes protein product named GT198, Hop2 or TBPIP. The GT198 gene is found to be mutated with its protein overexpressed in human cancers including breast and ovarian cancers.
Prognostic markers are biomarkers used to measure the progress of a disease in the patient sample. Prognostic markers are useful to stratify the patients into groups, guiding towards precise medicine discovery. The widely used prognostic markers in cancers include stage, size, grade, node and metastasis. In addition to these common markers, there are prognostic markers specific to different cancer types. For example estrogen level, progesterone and HER2 are markers specific to breast cancer patients. There is evidence showing that genes behaving as tumor suppressors or carcinogens could act as prognostic markers due to altered gene expression or mutation. Besides genetic biomarkers, there are also biomarkers that are detected in plasma or body fluid which can be metabolic or protein biomarkers.
Richard Malcolm Marais is Director of the Cancer Research UK (CRUK) Manchester Institute and Professor of Molecular Oncology at the University of Manchester.
Personalized onco-genomics (POG) is the field of oncology and genomics that is focused on using whole genome analysis to make personalized clinical treatment decisions. The program was devised at British Columbia's BC Cancer Agency and is currently being led by Marco Marra and Janessa Laskin. Genome instability has been identified as one of the underlying hallmarks of cancer. The genetic diversity of cancer cells promotes multiple other cancer hallmark functions that help them survive in their microenvironment and eventually metastasise. The pronounced genomic heterogeneity of tumours has led researchers to develop an approach that assesses each individual's cancer to identify targeted therapies that can halt cancer growth. Identification of these "drivers" and corresponding medications used to possibly halt these pathways are important in cancer treatment.
Jung-Min Lee is a South Korean-American medical oncologist and physician-scientist focused on the early clinical drug development and translational studies of targeted agents in BRCA mutation-associated breast or ovarian cancer, high-grade epithelial ovarian cancer, and triple-negative breast cancer. She is a NIH Lasker Clinical Research Scholar and principal investigator in the Women's Malignancies Branch at the National Cancer Institute.
{{cite web}}
: CS1 maint: url-status (link){{cite web}}
: Cite uses generic title (help)