This article may need to be rewritten to comply with Wikipedia's quality standards, as it displays inconsistent style and formatting, a lack of section breaks, and overuse of inline direct quotes.(March 2014) |
In music, a Klumpenhouwer Network is "any network that uses T and/or I operations (transposition or inversion) to interpret interrelations among pcs" (pitch class sets). [1] According to George Perle, "a Klumpenhouwer network is a chord analyzed in terms of its dyadic sums and differences," and "this kind of analysis of triadic combinations was implicit in," his "concept of the cyclic set from the beginning", [2] cyclic sets being those "sets whose alternate elements unfold complementary cycles of a single interval." [3] It is named for the Canadian music theorist Henry Klumpenhouwer, a former doctoral student of David Lewin's.
"Klumpenhouwer's idea, both simple and profound in its implications, is to allow inversional, as well as transpositional, relations into networks like those of Figure 1," [1] showing an arrow down from B to F♯ labeled T7, down from F♯ to A labeled T3, and back up from A to B, labeled T10 which allows it to be represented by Figure 2a, for example, labeled I5, I3, and T2. [1] In Figure 4 this is (b) I7, I5, T2 and (c) I5, I3, T2.
Lewin asserts the "recursive potential of K-network analysis" [4] ... "'in great generality: When a system modulates by an operation A, the transformation f' = A f A -inverse plays the structural role in the modulated system that f played in the original system." [5]
Given any network of pitch classes, and given any pc operation A, a second network may be derived from the first, and the relationship thereby derived 'network isomorphism' "arises between networks using analogous configurations of nodes and arrows to interpret pcsets that are of the same set class [6] – 'isomorphism of graphs'. Two graphs are isomorphic when they share the same structure of nodes-and-arrows, and when also the operations labeling corresponding arrows correspond under a particular sort of mapping f among T/I." [7]
"To generate isomorphic graphs, the mapping f must be what is called an automorphism of the T/I system. Networks that have isomorphic graphs are called isographic." [7]
To be isographic, two networks must have these features:
"Two networks are positively isographic when they share the same configuration of nodes and arrows, when the T-numbers of corresponding arrows are equal, and when the I-numbers of corresponding arrows differ by some fixed number j mod 12." [7] "We call networks that contain identical graphs 'strongly isographic'". [8] "Let the family of transpositions and inversions on pitch classes be called 'the T/I group.'" [9]
"Any network can be retrograded by reversing all arrows and adjusting the transformations accordingly." [7]
Klumpenhouwer's [true] conjecture: "nodes (a) and (b), sharing the same configuration of arrows, will always be isographic if each T-number of Network (b) is the same as the corresponding T-number of Network (a), while each I-number of Network (b) is exactly j more than the corresponding I-number of Network (a), where j is some constant number modulo 12." [6]
Five Rules for Isography of Klumpenhouwer Networks:
"Any one of Klupmenhouwer's triadic networks may thus be understood as a segment of cyclic set, and the interpretations of these and of the 'networks of networks'...efficiently and economically represented in this way." [2]
If the graphs of chords are isomorphic by way of the appropriate F(u,j) operations, then they may be graphed as their own network. [10]
Other terms include Lewin Transformational Network [11] and strongly isomorphic . [12]
In combinatorial mathematics, a Steiner system is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.
In finite geometry, the Fano plane is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here, PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.
In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 168 × 2 = 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in (Klein 1878b).
In discrete mathematics, and more specifically in graph theory, a vertex or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges, while a directed graph consists of a set of vertices and a set of arcs. In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another.
In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore all the properties of this geometry except for the relation of which points are on which lines for all points and lines. What is left is the incidence structure of the Euclidean plane.
In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings.
String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.
In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.
David Benjamin Lewin was an American music theorist, music critic and composer. Called "the most original and far-ranging theorist of his generation", he did his most influential theoretical work on the development of transformational theory, which involves the application of mathematical group theory to music.
Transformational theory is a branch of music theory developed by David Lewin in the 1980s, and formally introduced in his 1987 work, Generalized Musical Intervals and Transformations. The theory—which models musical transformations as elements of a mathematical group—can be used to analyze both tonal and atonal music.
In computing, a rose tree is a term for the value of a tree data structure with a variable and unbounded number of branches per node. The term is mostly used in the functional programming community, e.g., in the context of the Bird–Meertens formalism. Apart from the multi-branching property, the most essential characteristic of rose trees is the coincidence of bisimilarity with identity: two distinct rose trees are never bisimilar.
A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, but often called a Mason graph after Samuel Jefferson Mason who coined the term, is a specialized flow graph, a directed graph in which nodes represent system variables, and branches represent functional connections between pairs of nodes. Thus, signal-flow graph theory builds on that of directed graphs, which includes as well that of oriented graphs. This mathematical theory of digraphs exists, of course, quite apart from its applications.
In graph theory, a starSk is the complete bipartite graph K1,k : a tree with one internal node and k leaves. Alternatively, some authors define Sk to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k − 1 leaves.
In mathematics, and more specifically in graph theory, a directed graph is a graph that is made up of a set of vertices connected by directed edges, often called arcs.
Neo-Riemannian theory is a loose collection of ideas present in the writings of music theorists such as David Lewin, Brian Hyer, Richard Cohn, and Henry Klumpenhouwer. What binds these ideas is a central commitment to relating harmonies directly to each other, without necessary reference to a tonic. Initially, those harmonies were major and minor triads; subsequently, neo-Riemannian theory was extended to standard dissonant sonorities as well. Harmonic proximity is characteristically gauged by efficiency of voice leading. Thus, C major and E minor triads are close by virtue of requiring only a single semitonal shift to move from one to the other. Motion between proximate harmonies is described by simple transformations. For example, motion between a C major and E minor triad, in either direction, is executed by an "L" transformation. Extended progressions of harmonies are characteristically displayed on a geometric plane, or map, which portrays the entire system of harmonic relations. Where consensus is lacking is on the question of what is most central to the theory: smooth voice leading, transformations, or the system of relations that is mapped by the geometries. The theory is often invoked when analyzing harmonic practices within the Late Romantic period characterized by a high degree of chromaticism, including work of Schubert, Liszt, Wagner and Bruckner.
Similarity in network analysis occurs when two nodes fall in the same equivalence class.