Koenigsegg TFG

Last updated
TFG
KoenigseggTFG.jpg
Overview
Manufacturer Koenigsegg
Also calledTiny Friendly Giant
Production2020-present
Layout
Configuration Inline-3
Displacement 121.3152 cu in (2.0 L)
Cylinder bore 3.7 in (95 mm)
Piston stroke 3.68 in (93.5 mm)
Cylinder block material Magnesium alloy
Cylinder head material Magnesium alloy
Valvetrain Camless
RPM range
Max. engine speed 8500 RPM
Combustion
Fuel system E85
Fuel type Gasoline, E85, E100, Methanol
Output
Power output 600 hp (450 kW) @ 7500 RPM
Torque output 443 ft⋅lbf (601 N⋅m) @ 2000 RPM 295 ft⋅lbf (400 N⋅m) @ 1700 RPM
Dimensions
Dry weight 154 lb (70 kg) [1]

The Koenigsegg TFG is an inline-3 engine. The TFG stands for "Tiny Friendly Giant." It is a Freevalve (camless piston engine), thus it does not have a camshaft. Instead it uses electro-hydraulic-pneumatic actuators that allow it to open each valve (both intake and exhaust) independently to maximise performance and minimise fuel consumption depending on driving conditions. The actuators also have the ability to switch the engine between 2- and 4-stroke cycles by controlling the number of power strokes in relation to the number of idle strokes. [2] The patent for this system was bought by Koenigsegg's sister company Cargine Engineering in 2002. [2] The variable displacement system allows fuel economy to be 15%-20% higher than a variable camshaft engine. Cold start emissions are also drastically reduced by 60% over a variable camshaft engine. The engine is equipped with the same turbo for each set of exhaust valves developed by van der lee Turbo Systems, [3] So this is a switchable parallel system where at low exhaust mass flow the boost is created by one turbo and the second turbo being switched by at higher mass flow amounts, thus improving transient response. Without the turbos, Koenigsegg claims the engine is only capable of 300 hp (220 kW). The engine can operate on the Otto cycle, Miller cycle, or the Atkinson cycle. [4] Further advantages of the camless engine is that a throttle body is no longer required because of the precision of the valve timing. According to Koenigsegg CEO Christian von Koenigsegg, when running on Gen 2.0 ethanol, the TFG becomes "at least as CO2-neutral as an EV running on renewable electric sources such as solar or wind." [5] The TFG follows previous Koenigsegg engines in its ability to run on all major fuels, from E100 to standard gas.

Related Research Articles

<span class="mw-page-title-main">Camshaft</span> Mechanical component that converts rotational motion to reciprocal motion

A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

<span class="mw-page-title-main">VVT-i</span> Automobile variable valve timing technology

VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing petrol engine technology manufactured by Toyota Group and used by brands Groupe PSA, Toyota, Lexus, Scion, Daihatsu, Subaru, Aston Martin, Pontiac and Lotus Cars. It was introduced in 1995 with the 2JZ-GE engine found in the JZS155 Toyota Crown and Crown Majesta.

<span class="mw-page-title-main">Active valve control system</span> Automobile variable valve timing technology

The active valve control system (AVCS) is an automobile variable valve timing technology used by Subaru. It varies the timing of the valves by using hydraulic oil pressure to rotate the camshaft, known as "phasing", in order to provide optimal valve timing for engine load conditions. The system is closed loop using the camshaft sensors, crankshaft sensors, air flow meter, throttle position as well as oxygen sensors and/or Air-Fuel ratio sensors in order to calculate engine load. The ECU is programmed to operate control valves that adjust the delivery of the hydraulic pressure in order to move the camshaft into the position that will provide the engine with the best performance while meeting emissions standards.

The GM Ecotec engine, also known by its codename L850, is a family of all-aluminium inline-four engines, displacing between 1.2 and 2.5 litres. Confusingly, the Ecotec name was also applied to both the Buick V6 Engine when used in Holden Vehicles, as well as the final DOHC derivatives of the previous GM Family II engine; the architecture was substantially re-engineered for this new Ecotec application produced since 2000. This engine family replaced the GM Family II engine, the GM 122 engine, the Saab H engine, and the Quad 4 engine. It is manufactured in multiple locations, to include Spring Hill Manufacturing, in Spring Hill, Tennessee, with engine blocks and cylinder heads cast at Saginaw Metal Casting Operations in Saginaw, Michigan.

<span class="mw-page-title-main">Overhead camshaft engine</span> Valvetrain configuration

An overhead camshaft (OHC) engine is a piston engine in which the camshaft is located in the cylinder head above the combustion chamber. This contrasts with earlier overhead valve engines (OHV), where the camshaft is located below the combustion chamber in the engine block.

<span class="mw-page-title-main">Nissan RB engine</span> Reciprocating internal combustion engine

The RB engine is an oversquare 2.0–3.0 L straight-6 four-stroke gasoline engine from Nissan, originally produced from 1985 to 2004. The RB followed the 1983 VG-series V6 engines to offer a full, modern range in both straight or V layouts. It was part of a new engine family name PLASMA.

<span class="mw-page-title-main">Ford Power Stroke engine</span> Reciprocating internal combustion engine

Power Stroke, also known as Powerstroke, is the name used by a family of diesel engines for trucks produced by Ford Motor Company and Navistar International for Ford products since 1994. Along with its use in the Ford F-Series, applications include the Ford E-Series, Ford Excursion, and Ford LCF commercial truck. The name was also used for a diesel engine used in South American production of the Ford Ranger.

<span class="mw-page-title-main">Honda C engine</span> Reciprocating internal combustion engine

Honda's first production V6 was the C series; it was produced in displacements from 2.0 to 3.5 liters. The C engine was produced in various forms for over 20 years (1985–2005), having first been used in the KA series Legend model, and its British sister car the Rover 800-series.

<span class="mw-page-title-main">Variable-geometry turbocharger</span> Type of turbocharging technology

Variable-geometry turbochargers (VGTs), occasionally known as variable-nozzle turbochargers (VNTs), are a type of turbochargers, usually designed to allow the effective aspect ratio of the turbocharger to be altered as conditions change. This is done with the use of adjustable vanes located inside the turbine housing between the inlet and turbine, these vanes affect flow of gases towards the turbine. The benefit of the VGT is that the optimum aspect ratio at low engine speeds is very different from that at high engine speeds.

A camless or free-valve piston engine is an engine that has poppet valves operated by means of electromagnetic, hydraulic, or pneumatic actuators instead of conventional cams. Actuators can be used to both open and close valves, or to open valves closed by springs or other means.

<span class="mw-page-title-main">Valvetrain</span> Mechanical system in an internal combustion engine

A valvetrain is a mechanical system that controls the operation of the intake and exhaust valves in an internal combustion engine. The intake valves control the flow of air/fuel mixture into the combustion chamber, while the exhaust valves control the flow of spent exhaust gases out of the combustion chamber once combustion is completed.

<span class="mw-page-title-main">Nissan VR engine</span> Reciprocating internal combustion engine

The VR is a series of twin-turbo DOHC V6 automobile engines from Nissan with displacements of 3.0 and 3.8 L. An evolution of the widely successful VQ series, it also draws on developments from the VRH, JGTC, and Nissan R390 GT1 Le Mans racing engines.

<span class="mw-page-title-main">Two-stroke diesel engine</span> Engine type

A two-stroke diesel engine is a diesel engine that uses compression ignition in a two-stroke combustion cycle. It was invented by Hugo Güldner in 1899.

<span class="mw-page-title-main">MultiAir</span> Automobile variable valve timing technology

MultiAir or Multiair is a hydraulically-actuated variable valve timing (VVT) and variable valve lift (VVL) engine technology enabling "cylinder by cylinder, stroke by stroke" control of intake air directly via a gasoline engine's inlet valves. Developed by Fiat Powertrain Technologies, the technology addresses a primary engine inefficiency: pumping losses caused by restricting intake passage by the throttle plate that regulates air feeding the cylinders.

The Subaru six-cylinder engines are a series of flat-6 engines manufactured by Subaru, made in three distinct generations. The ER27, derived from the Subaru EA first-generation flat-4, was used as the sole engine option in the premium model 1988–91 Subaru Alcyone VX. The EG33, derived from the Subaru EJ second-generation flat-4, was used exclusively in the successor Subaru Alcyone SVX, again as its sole engine option, sold from 1991–96. The EZ series, consisting of the EZ30 and EZ36 models, was designed to be almost as compact as the EJ25 flat-4. The EZ30/36 were the first Subaru six-cylinder engines available outside the sport coupes, used as the uplevel option for Subaru Legacy (2002–19) and Outback/Lancaster (2001–19) as well as the sole option in the Subaru Tribeca (2006–14).

<span class="mw-page-title-main">Koenigsegg Gemera</span> Swedish plug-in hybrid sports car

The Koenigsegg Gemera is a limited production four-seat plug-in hybrid grand tourer to be manufactured by the Swedish automobile manufacturer Koenigsegg. It was unveiled on 3 March 2020 at an online broadcast by Koenigsegg at the cancelled Geneva Motor Show.

<span class="mw-page-title-main">Volkswagen-Audi V8 engine</span> Reciprocating internal combustion engine

The Volkswagen-Audi V8 engine family is a series of mechanically similar, gasoline-powered and diesel-powered, V-8, internal combustion piston engines, developed and produced by the Volkswagen Group, in partnership with Audi, since 1988. They have been used in various Volkswagen Group models, and by numerous Volkswagen-owned companies. The first spark-ignition gasoline V-8 engine configuration was used in the 1988 Audi V8 model; and the first compression-ignition diesel V8 engine configuration was used in the 1999 Audi A8 3.3 TDI Quattro. The V8 gasoline and diesel engines have been used in most Audi, Volkswagen, Porsche, Bentley, and Lamborghini models ever since. The larger-displacement diesel V8 engine configuration has also been used in various Scania commercial vehicles; such as in trucks, buses, and marine (boat) applications.

References

  1. David Tracy (9 March 2020). "A Detailed Look At The Koenigsegg Gemera's Mind-Blowing Engineering" . Retrieved 28 December 2021.
  2. 1 2 US 7047910,Hedman, Mats,"Method of torque modulation",published 2006-05-23,issued 2002-08-29, assigned to Cargine Engineering AB
  3. Radu, Vlad (2020-10-20). "Koenigsegg Gemera: ibrida col motore Freevalve Gemera". autoevolution. Retrieved 2020-11-26.
  4. Warner, Robin (2020-03-26). "Free valve! It's the only way to achieve a true engine democracy and a great way to make 600 hp". Autoweek. Retrieved 2020-11-26.
  5. "Interview on the Gemera with Christian von Koenigsegg". Koenigsegg. Retrieved 28 December 2021.