Lactiplantibacillus plantarum

Last updated

Lactiplantibacillus plantarum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Lactobacillales
Family: Lactobacillaceae
Genus: Lactiplantibacillus
Species:
L. plantarum
Binomial name
Lactiplantibacillus plantarum
(Orla-Jensen 1919) Zheng et al. 2020
Synonyms
  • "Streptobacterium plantarum" Orla-Jensen 1919
  • Lactobacillus plantarum(Orla-Jensen 1919) Bergey et al. 1923 (Approved Lists 1980)
  • Lactobacillus arizonensisSwezey et al. 2000

Lactiplantibacillus plantarum (formerly Lactobacillus arabinosus and Lactobacillus plantarum) [1] is a widespread member of the genus Lactiplantibacillus and commonly found in many fermented food products as well as anaerobic plant matter. [2] L. plantarum was first isolated from saliva. Based on its ability to temporarily persist in plants, the insect intestine and in the intestinal tract of vertebrate animals, it was designated as a nomadic organism. [3] [4] L. plantarum is Gram positive, bacilli shaped bacterium. L. plantarum cells are rods with rounded ends, straight, generally 0.9–1.2 μm wide and 3–8 μm long, occurring singly, in pairs or in short chains. [5] L. plantarum has one of the largest genomes known among the lactic acid bacteria and is a very flexible and versatile species. It is estimated to grow between pH 3.4 and 8.8. [6] Lactiplantibacillus plantarum can grow in the temperature range 12 °C to 40 °C. [7] The viable counts of the "L. plantarum" stored at refrigerated condition (4 °C) remained high, while a considerable reduction in the counts was observed stored at room temperature (25 ± 1 °C). [8]

Contents

Metabolism

Lactiplantibacillus plantarum are homofermentative, aerotolerant Gram-positive bacteria that grow at 15 °C (59 °F), but not at 45 °C (113 °F), and produce both isomers of lactic acid (D and L). Many lactobacilli including L. plantarum are unusual in that they can respire oxygen and express cytochromes  if heme and menaquinone are present in the growth medium. [9] [10] In the absence of heme and menaquinone, oxygen is consumed by NADH-peroxidase with hydrogen peroxide as intermediate and water as end product. [9] [10] The peroxide, it is presumed, acts as a weapon to exclude competing bacteria from the food source. In place of the protective enzyme superoxide dismutase present in almost all other oxygen-tolerant cells, this organism accumulates millimolar quantities of manganese polyphosphate. Manganese is also used by L. plantarum in a pseudo-catalase to lower reactive oxygen levels. Because the chemistry by which manganese complexes protect the cells from oxygen damage is subverted by iron, these cells contain virtually no iron atoms; in contrast, a cell of Escherichia coli of comparable volume contains over one-million iron atoms. Because of this, L. plantarum cannot be used to create active enzymes that require a heme complex, such as true catalases. [11]

L. plantarum can also reduce insoluble terminal electron acceptors, such as iron oxides or solid electrodes through extracellular electron transfer when riboflavin and quinone (such as 1 4-dihydroxy-2-naphthoic acid, DHNA) are present. [12] [13] L. plantarum uses extracellular electron transfer to increase the NAD+/NADH ratio, accelerate fermentation, generate more ATP through the substrate-level phosphorylation, and accumulate more biomass. [12]

Lactiplantibacillus plantarum, like many lactobacilli, can be cultured using MRS media. [14]

Genomes

The genome sequencing of the lactic acid bacterium L. plantarum WCFS1 shows more molecular details. The chromosome contains 3,308,274 base pairs. [15] The GC content of L. plantarum is 44.45% with the average protein count 3063. According to the experiment from Wageningen Centre for Food Sciences, the rRNA number of L. plantarum WCFS1 is 15, and the number or tRNA is 70. [5]

Products

Silage

Lactiplantibacillus plantarum is the most common bacterium used in silage inoculants. During the anaerobic conditions of ensilage, these organisms quickly dominate the microbial population, and, within 48 hours, they begin to produce lactic and acetic acids via the Embden-Meyerhof Pathway, further diminishing their competition. Under these conditions, L. plantarum strains producing high levels of heterologous proteins have been found to remain highly competitive. This quality could allow this species to be utilized as an effective biological pretreatment for lignocellulosic biomass. [16]

Food products

Lactiplantibacillus plantarum is commonly found in milk products, meat and a lot of vegetable fermentations including sauerkraut, pickles, brined olives, Korean kimchi, Nigerian Ogi, sourdough, and other fermented plant material, and also some cheeses, fermented sausages, and stockfish. The high levels of this organism in food also makes it an ideal candidate for the development of probiotics. In a 2008 study by Juana Frias et al., L. plantarum was applied to reduce the allergenicity of soy flour. The result showed that, compared to other microbes, L. plantarum-fermented soy flour showed the highest reduction in IgE immunoreactivity (96–99%), depending upon the sensitivity of the plasma used. L. plantarum is also found in dadiah, a traditional fermented buffalo milk of the Minangkabau people, native to Sumatra, Indonesia. [17]

Lactobacillus plantarum strain K21 is a gram-positive bacteria isolated from fermented vegetables. It has the ability to hydrolyze bile salt when it is provided as a supplement. In fat mice, K21 also reduces the levels of cholesterol and triglyceride, and inhibits the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, it reduces the level of plasma leptin, mitigates liver damage and alleviates glucose intolerance. Finally K21 inhibits body weight gain and fat mass accumulation. [18]

Therapeutics

Because it is abundant, of human origin, and easy to grow, L. plantarum has been tested for health effects. It has been identified as a probiotic, which suggests its value for further research and application. [19] L. plantarum has significant antioxidant activities and also helps to maintain intestinal permeability. [20] It is able to suppress the growth of gas-producing bacteria in the intestines and may benefit some patients who suffer from IBS. [21] It helps to create microbe balance and stabilize digestive enzyme patterns. [15] Lactiplantibacillus plantarum has been found in experiments to increase hippocampal brain derived neurotrophic factor, which means L. plantarum may have a beneficial role in the treatment of depression. [22] The ability of L. plantarum to survive in the human gastro-intestinal tract makes it a possible in vivo delivery vehicle for therapeutic compounds or proteins.

Lactiplantibacillus plantarum is a constituent in VSL#3. This proprietary, standardized formulation of live bacteria may be used in combination with conventional therapies to treat ulcerative colitis and requires a prescription. [23]

Antimicrobial property

The ability of L. plantarum to produce antimicrobial substances helps them survive in the gastrointestinal tract of humans. The antimicrobial substances produced have shown significant effect on Gram-positive and Gram-negative bacteria.[ citation needed ]

Activity against AIDS-defining illnesses

As a result of initial HIV infection, the gut has been found to be a prime center of immune activity. [24] The immune systems' Paneth cells of the gut attack HIV by producing interleukin 1 beta (IL-1β), which results in extensive collateral damage—sloughing of tight intestinal lining, witnessed as severe diarrhea. This destruction of the gut lining allows fungal pathogens to invade, e.g., Cryptococcus species, resulting in an AIDS-defining illness such as cryptococcosis, representing 60% to 70% of all AIDS-defining cases, [25] but not necessarily only the gut. In rhesus macaques, L. plantarum is able to reduce (destroy) IL-1β, resolving inflammation, and accelerating gut repair within hours. [24]

Biochemistry

The entire genome has recently been sequenced, and promoter libraries have been developed for both conditional and constitutive gene expression, adding to the utility of L. plantarum. It is also commonly employed as the indicative organism in niacin bioassay experiments, in particular, AOAC International Official Method 944.13, as it is a niacin auxotroph. [26] [27]

See also

Related Research Articles

<i>Lactobacillus</i> Genus of bacteria

Lactobacillus is a genus of gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.

<i>Lactobacillus delbrueckii <span style="font-style:normal;">subsp.</span> bulgaricus</i> Subspecies of bacteria, used in yogurt

Lactobacillus bulgaricus is one of over 200 published species in the Lactobacillus genome complex (LGC) and is the main bacterium used for the production of yogurt. It also plays a crucial role in the ripening of some cheeses, as well as in other processes involving naturally fermented products. It is defined as homofermentive lactic acid bacteria due to lactic acid being the single end product of its carbohydrate digestion. It is also considered a probiotic.

<span class="mw-page-title-main">Probiotic</span> Microorganisms said to provide health benefits when consumed

Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is some evidence that probiotics are beneficial for some conditions, but there is little evidence for many of the health benefits claimed for them.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is most commonly found in humans, specifically the gastrointestinal tract, oral cavity, and vagina, as well as various fermented foods such as fermented milk or yogurt. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.

<i>Lacticaseibacillus casei</i> Species of bacterium

Lacticaseibacillus casei is an organism that belongs to the largest genus in the family Lactobacillaceae, a lactic acid bacteria (LAB), that was previously classified as Lactobacillus casei. This bacteria has been identified as facultatively anaerobic or microaerophilic, acid-tolerant, non-spore-forming bacteria.

<i>Lacticaseibacillus rhamnosus</i> Species of bacterium

Lacticaseibacillus rhamnosus is a bacterium that originally was considered to be a subspecies of L. casei, but genetic research found it to be a separate species in the L. casei clade, which also includes L. paracasei and L. zeae. It is a short Gram-positive homofermentative facultative anaerobic non-spore-forming rod that often appears in chains. Some strains of L. rhamnosus bacteria are being used as probiotics, and are particularly useful in treating infections of the female urogenital tract, most particularly very difficult to treat cases of bacterial vaginosis. The species Lacticaseibacillus rhamnosus and Limosilactobacillus reuteri are commonly found in the healthy female genito-urinary tract and are helpful to regain control of dysbiotic bacterial overgrowth during an active infection. L. rhamnosus sometimes is used in dairy products such as fermented milk and as non-starter-lactic acid bacterium (NSLAB) in long-ripened cheese. While frequently considered a beneficial organism, L. rhamnosus may not be as beneficial to certain subsets of the population; in rare circumstances, especially those primarily involving weakened immune system or infants, it may cause endocarditis. Despite the rare infections caused by L. rhamnosus, the species is included in the list of bacterial species with qualified presumed safety (QPS) status of the European Food Safety Agency.

<span class="mw-page-title-main">Lactic acid bacteria</span> Order of bacteria

Lactobacillales are an order of gram-positive, low-GC, acid-tolerant, generally nonsporulating, nonrespiring, either rod-shaped (bacilli) or spherical (cocci) bacteria that share common metabolic and physiological characteristics. These bacteria, usually found in decomposing plants and milk products, produce lactic acid as the major metabolic end product of carbohydrate fermentation, giving them the common name lactic acid bacteria (LAB).

Limosilactobacillus reuteri is a lactic acid bacterium found in a variety of natural environments, including the gastrointestinal tract of humans and other animals. It does not appear to be pathogenic and may have health effects.

<span class="mw-page-title-main">Lactobacillaceae</span> Family of bacteria

The Lactobacillaceae are a family of lactic acid bacteria. It is the only family in the lactic acid bacteria which includes homofermentative and heterofermentative organisms; in the Lactobacillaceae, the pathway used for hexose fermentation is a genus-specific trait. Lactobacillaceae include the homofermentative lactobacilli Lactobacillus, Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacillus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, and Lactiplantibacillus; the heterofermentative lactobacilli Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus, and Lentilactobacillus, which were previously classified in the genus Lactobacillus; and the heterofermentative genera Convivina, Fructobacillus, Leuconostoc, Oenococcus, and Weissella which were previously classified in the Leuconostocaceae.

<span class="mw-page-title-main">Dadiah</span> Indonesian traditional fermented milk

Dadiah (Minangkabau) or dadih (Indonesian) a traditional fermented milk popular among people of West Sumatra, Indonesia, is made by pouring fresh, raw, unheated, buffalo milk into a bamboo tube capped with a banana leaf and allowing it to ferment spontaneously at room temperature for two days.

Levilactobacillus brevis is a gram-positive, rod shaped species of lactic acid bacteria which is heterofermentative, creating CO2, lactic acid and acetic acid or ethanol during fermentation. L. brevis is the type species of the genus Levilactobacillus (previously L. brevis group), which comprises 24 species. It can be found in many different environments, such as fermented foods, and as normal microbiota. L. brevis is found in food such as sauerkraut and pickles. It is also one of the most common causes of beer spoilage. Ingestion has been shown to improve human immune function, and it has been patented several times. Normal gut microbiota L. brevis is found in human intestines, vagina, and feces.

Limosilactobacillus fermentum is a Gram-positive species in the heterofermentative genus Limosilactobacillus. It is associated with active dental caries lesions. It is also commonly found in fermenting animal and plant material including sourdough and cocoa fermentation. A few strains are considered probiotic or "friendly" bacteria in animals and at least one strain has been applied to treat urogenital infections in women. Some strains of lactobacilli formerly mistakenly classified as L. fermentum have since been reclassified as Limosilactobacillus reuteri. Commercialized strains of L. fermentum used as probiotics include PCC, ME-3 and CECT5716

<span class="mw-page-title-main">Kefir</span> Fermented milk drink made from kefir grains

Kefir is a fermented milk drink similar to a thin yogurt or ayran that is made from kefir grains, a specific type of mesophilic symbiotic culture. It is prepared by inoculating the milk of cows, goats, or sheep with kefir grains.

<i>Latilactobacillus sakei</i> Species of bacterium

Latilactobacillus sakei is the type species of the genus Latilactobacillus that was previously classified in the genus Lactobacillus. It is homofermentative; hexoses are metabolized via glycolysis to lactic acid as main metabolite; pentoses are fermented via the Phosphoketolase pathway to lactic and acetic acids.

Lactiplantibacillus paraplantarum is a rod-shaped species of lactic acid bacteria first isolated from beer and human faeces. It is facultatively heterofermentative. Strain CNRZ 1885 is the type strain.

<i>Lacticaseibacillus paracasei</i> Species of bacterium

Lacticaseibacillus paracasei (commonly abbreviated as Lc. paracasei) is a gram-positive, homofermentative species of lactic acid bacteria that are commonly used in dairy product fermentation and as probiotic cultures. Lc. paracasei is a bacterium that operates by commensalism. It is commonly found in many human habitats such as human intestinal tracts and mouths as well as sewages, silages, and previously mentioned dairy products. The name includes morphology, a rod-shaped bacterium with a width of 2.0 to 4.0μm and length of 0.8 to 1.0μm.

Limosilactobacillus pontis is a rod-shaped, Gram-positive facultatively anaerobic bacterium. Along with other Lactobacillus species, it is capable of converting sugars, such as lactose, into lactic acid. Limosilactobacillus pontis is classified under the phylum Bacillota, class Bacilli, and is a member of the family Lactobacillaceae and is found to be responsible for the fermentation of sourdough, along with many other Lactobacillus species. This microorganism produces lactic acid during the process of fermentation, which gives sourdough bread its characteristic sour taste.

Lactiplantibacillus fabifermentans is a member of the genus Lactiplantibacillus and a type of lactic acid bacteria (LAB), a group of Gram-positive bacteria that produce lactic acid as their major fermented end product and that are often involved in food fermentation. L. fabifermentans was proposed in 2009 as a new species, after the type strain LMG 24284T has been isolated from Ghanaian cocoa fermentation. Analysis of the 16S rRNA gene sequence demonstrated that this species is a member of the Lactobacillus plantarum species group but further analysis demonstrated that it is possible to differentiate it from the nearest neighbors by means of DNA-DNA hybridization experiments, pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization.

<i>Lactobacillus bulgaricus</i> GLB44 Subspecies of bacterium

Lactobacillus delbrueckii subsp. bulgaricus is a bacterial subspecies traditionally isolated from European yogurts. Lactobacillus bulgaricusGLB44 differs from other L. bulgaricus strains because it was isolated from the leaves of Galanthus nivalis in Bulgaria.

Lactobacillus kefiranofaciens is a species of slime-forming, homofermentative, rod-shaped lactic acid bacteria first isolated from kefir grains, hence its name. Its type strain is WT-2B. Its genome has been sequenced. Lactobaccillus kefiranofaciens was first identified in 1967 in Russia through studying kefir granules. Lactobaccillus kefiranofaciens is part of the lactobacillus genus and firmicutes phylum of bacteria. These bacterium metabolize carbohydrates and produce lactic acid, which can be useful in fermentation. Two subspecies have been identified as kefirgranum and kefiranofaciens, which share properties such as being gram-positive, facultatively anaerobic, and rod-shaped.L. kefiranofaciens is the subspecies related to kefir granules. Studies have investigated the origins and causes for variation in kefir composition and led to conflicting results. Some studies indicate the presence of L.kefiranofaciens was due to geographical location, while others indicate it was due to the different milks used.

References

  1. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (March 2010). "The extracellular biology of the lactobacilli". FEMS Microbiology Reviews. 34 (2): 199–230. doi: 10.1111/j.1574-6976.2009.00208.x . PMID   20088967.
  2. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. (April 2020). "A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae". International Journal of Systematic and Evolutionary Microbiology. 70 (4): 2782–2858. doi: 10.1099/ijsem.0.004107 . hdl: 10067/1738330151162165141 . PMID   32293557.
  3. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, et al. (August 2017). "Lifestyles in transition: evolution and natural history of the genus Lactobacillus". FEMS Microbiology Reviews. 41 (Supp_1): S27–S48. doi: 10.1093/femsre/fux030 . PMID   28673043.
  4. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al. (December 2016). "Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats". Environmental Microbiology. 18 (12): 4974–4989. doi: 10.1111/1462-2920.13455 . hdl: 2066/171054 . PMID   27422487.
  5. 1 2 Landete JM, Rodríguez H, Curiel JA, De Las Rivas B, De Felipe FL, Muñoz R (2010). "Degradation of Phenolic Compounds Found in Olive Products by Lactobacillus plantarum Strains". Olives and Olive Oil in Health and Disease Prevention. pp. 387–396. doi:10.1016/B978-0-12-374420-3.00043-7. ISBN   9780123744203. S2CID   89393063.
  6. E Giraud, B Lelong and M Raimbault. 1991. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Applied Microbiology and Biotechnology. 36(1):96–99.
  7. Z Matejčeková et al. 2016. Characterization of the growth of Lactobacillus plantarum in milk in dependence on temperature. Acta Chimica Slovaca. 9(2)104—108.
  8. Dhewa T, Pant S, Mishra V (January 2014). "Development of freeze dried synbiotic formulation using a probiotic strain of Lactobacillus plantarum". Journal of Food Science and Technology. 51 (1): 83–89. doi:10.1007/s13197-011-0457-2. PMC   3857416 . PMID   24426051.
  9. 1 2 Gänzle MG (2015). "Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage". Current Opinion in Food Science. 2: 106–117. doi:10.1016/j.cofs.2015.03.001. ISSN   2214-7993.
  10. 1 2 Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A (2012-04-10). "Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology". Annual Review of Food Science and Technology. 3 (1): 37–58. doi:10.1146/annurev-food-022811-101255. PMID   22385163.
  11. Kono Y, Fridovich I (August 1983). "Functional significance of manganese catalase in Lactobacillus plantarum". Journal of Bacteriology. 155 (2): 742–746. doi:10.1128/jb.155.2.742-746.1983. PMC   217745 . PMID   6874643.
  12. 1 2 Tejedor-Sanz S, Stevens ET, Li S, Finnegan P, Nelson J, Knoesen A, Light SH, Ajo-Franklin CM, Marco ML (February 2022). "Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism". eLife. 11: e70684. doi: 10.7554/eLife.70684 . PMC   8837199 . PMID   35147079.
  13. Tolar JG, Li S, Ajo-Franklin CM (2022-12-19). "The Differing Roles of Flavins and Quinones in Extracellular Electron Transfer in Lactiplantibacillus plantarum". Applied and Environmental Microbiology. 89 (1): e0131322. doi:10.1128/aem.01313-22. PMC   9888254 . PMID   36533923.
  14. Wegkamp A, Teusink B, de Vos WM, Smid EJ (January 2010). "Development of a minimal growth medium for Lactobacillus plantarum". Letters in Applied Microbiology. 50 (1): 57–64. doi:10.1111/j.1472-765X.2009.02752.x. PMID   19874488. S2CID   9353126.
  15. 1 2 "Lactobacillus plantarum - microbewiki". microbewiki.kenyon.edu. Retrieved 2018-05-12.
  16. Kim JH, Block DE, Mills DA (November 2010). "Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass". Applied Microbiology and Biotechnology. 88 (5): 1077–1085. doi:10.1007/s00253-010-2839-1. PMC   2956055 . PMID   20838789.
  17. Nybom SM, Collado MC, Surono IS, Salminen SJ, Meriluoto JA (May 2008). "Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk". Journal of Agricultural and Food Chemistry. 56 (10): 3714–3720. doi:10.1021/jf071835x. PMID   18459790.
  18. Wu CC, Weng WL, Lai WL, Tsai HP, Liu WH, Lee MH, Tsai YC (2015). "Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice". Evidence-Based Complementary and Alternative Medicine. 2015: 391767. doi: 10.1155/2015/391767 . PMC   4353445 . PMID   25802537.
  19. "Lactobacillus plantarum | Viticulture & Enology". wineserver.ucdavis.edu. Archived from the original on 2018-05-04. Retrieved 2018-05-12.
  20. Bested AC, Logan AC, Selhub EM (March 2013). "Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research". Gut Pathogens. 5 (1): 3. doi: 10.1186/1757-4749-5-3 . PMC   3601973 . PMID   23497633.
  21. Bixquert Jiménez M (August 2009). "Treatment of irritable bowel syndrome with probiotics. An etiopathogenic approach at last?". Revista Espanola de Enfermedades Digestivas. 101 (8): 553–564. doi: 10.4321/s1130-01082009000800006 . PMID   19785495.
  22. Bested AC, Logan AC, Selhub EM (March 2013). "Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III - convergence toward clinical trials". Gut Pathogens. 5 (1): 4. doi: 10.1186/1757-4749-5-4 . PMC   3605358 . PMID   23497650.
  23. Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW (2014). "Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease". Clinical and Experimental Gastroenterology. 7: 473–487. doi: 10.2147/CEG.S27530 . PMC   4266241 . PMID   25525379.
  24. 1 2 Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, et al. (August 2014). "Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption". PLOS Pathogens. 10 (8): e1004311. doi: 10.1371/journal.ppat.1004311 . PMC   4148401 . PMID   25166758.
  25. CNS Cryptococcosis in HIV at eMedicine
  26. Tsuda H, Matsumoto T, Ishimi Y (2011). "Biotin, niacin, and pantothenic acid assay using lyophilized lactobacillus plantarum ATCC 8014". Journal of Nutritional Science and Vitaminology. 57 (6): 437–440. doi: 10.3177/jnsv.57.437 . PMID   22472287.
  27. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, et al. (December 2011). "B-group vitamin production by lactic acid bacteria--current knowledge and potential applications". Journal of Applied Microbiology. 111 (6): 1297–1309. doi:10.1111/j.1365-2672.2011.05157.x. hdl: 11336/54445 . PMID   21933312. S2CID   22065043.

Further reading