In mathematics, Lill's method is a visual method of finding the real roots of a univariate polynomial of any degree. [1] It was developed by Austrian engineer Eduard Lill in 1867. [2] A later paper by Lill dealt with the problem of complex roots. [3]
Lill's method involves drawing a path of straight line segments making right angles, with lengths equal to the coefficients of the polynomial. The roots of the polynomial can then be found as the slopes of other right-angle paths, also connecting the start to the terminus, but with vertices on the lines of the first path.
To employ the method, a diagram is drawn starting at the origin. A line segment is drawn rightwards by the magnitude of the first coefficient (the coefficient of the highest-power term) (so that with a negative coefficient, the segment will end left of the origin). From the end of the first segment, another segment is drawn upwards by the magnitude of the second coefficient, then left by the magnitude of the third, and down by the magnitude of the fourth, and so on. The sequence of directions (not turns) is always rightward, upward, leftward, downward, then repeating itself. Thus, each turn is counterclockwise. The process continues for every coefficient of the polynomial, including zeros, with negative coefficients "walking backwards." The final point reached, at the end of the segment corresponding to the equation's constant term, is the terminus.
A line is then launched from the origin at some angle θ, reflected off of each line segment at a right angle (not necessarily the "natural" angle of reflection), and refracted at a right angle through the line through each segment (including a line for the zero coefficients) when the angled path does not hit the line segment on that line. [4] The vertical and horizontal lines are reflected off or refracted through in the following sequence: the line containing the segment corresponding to the coefficient of then of etc. Choosing θ so that the path lands on the terminus, the negative of the tangent of θ is a root of this polynomial. For every real zero of the polynomial there will be one unique initial angle and path that will land on the terminus. A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions.
For complex roots, one also needs to find a series of similar triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case the root path will not be rectangular. [5] [3]
The construction in effect evaluates the polynomial according to Horner's method. For the polynomial the values of , , are successively generated as distances between the vertices of the polynomial and root paths. For a root of the polynomial the final value is zero, so the last vertex coincides with the polynomial path terminus.
A solution line giving a root is similar to the Lill's construction for the polynomial with that root removed, because the visual construction is analogous to the synthetic division of the polynomial by a linear (root) monic (Ruffini's rule).
From the symmetry of the diagram, it can easily be seen that the roots of the reversed polynomial are the reciprocals of the original roots.
The construction can also be done using clockwise turns instead of counterclockwise turns. When a path is interpreted using the other convention, it corresponds to the mirrored polynomial (every odd coefficient sign changed) and the roots are negated.
When the right-angle path is traversed in the other direction but the same direction convention, it corresponds to the reversed mirrored polynomial and the roots are the negative reciprocals of the original roots. [4]
Lill's method can be used with Thales's theorem to find the real roots of a quadratic polynomial.
In this example with 3x2+5x−2, the polynomial's line segments are first drawn in black, as above. A circle is drawn with the straight line segment joining the start and end points forming a diameter.
According to Thales's theorem, the triangle containing these points and any other point on the circle is a right triangle. Intersects of this circle with the middle segment of Lill's method, extended if needed, thus define the two angled paths in Lill's method, coloured blue and red.
The negative of the gradients of their first segments, m, yield the real roots 1/3 and −2.
In 1936 Margherita Piazzola Beloch showed how Lill's method could be adapted to solve cubic equations using paper folding. [6] If simultaneous folds are allowed then any nth degree equation with a real root can be solved using n–2 simultaneous folds. [7]
In this example with 3x3+2x2−7x+2, the polynomial's line segments are first drawn on a sheet of paper (black). Lines passing through reflections of the start and end points in the second and third segments, respectively (faint circle and square), and parallel to them (grey lines) are drawn.
For each root, the paper is folded until the start point (black circle) and end point (black square) are reflected onto these lines. The axis of reflection (dash-dot line) defines the angled path corresponding to the root (blue, purple and red). The negative of the gradients of their first segments, m, yield the real roots 1/3, 1 and −2.
In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots.
In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.
The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.
The imaginary unit or unit imaginary number is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.
In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
In algebra, a cubic equation in one variable is an equation of the form in which a is not zero.
In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".
In algebra, a quartic function is a function of the form
In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter, commonly a gain within a feedback system. This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter.
In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and
In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. In other words, the method can be used to solve numerically the equation
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is
In mathematics, a univariate polynomial of degree n with real or complex coefficients has n complex roots, if counted with their multiplicities. They form a multiset of n points in the complex plane. This article concerns the geometry of these points, that is the information about their localization in the complex plane that can be deduced from the degree and the coefficients of the polynomial.
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders".
Finding polynomial roots is a long-standing problem that has been the object of much research throughout history. A testament to this is that up until the 19th century, algebra meant essentially theory of polynomial equations.