List of stoffs

Last updated

During World War II, Germany fielded many aircraft and rockets whose fuels, and oxidizers, were designated (letter)-Stoff (pronounced [ʃtɔf] ). The following list of stoffs refers to the World War II aerospace meanings if not noted otherwise.

Contents

Meaning of stoff

The German word Stoff (plural Stoffe), like the English word stuff, derives from Old French estoffe, however the meanings are somewhat different. Stoff has a fairly broad range of meanings, including "chemical substance" or "matter", "fuel" and "cloth", depending on the context. [1] The German names of the common elements hydrogen, oxygen and nitrogen are Wasserstoff, Sauerstoff and Stickstoff ("hydrogen" being a scientific Greek neologism for "constituent of water", "oxygen" for "constituent of acids", "nitrogen" for "constituent of nitre", i.e. saltpeter - although the German root stick- is derived from ersticken, "to smother, suffocate", referring to its property of not supporting combustion and respiration). Stoff was used in chemical code names in both world wars. Some code names were reused between the wars and had different meanings at different times; for example, T-Stoff meant a rocket propellant in World War II, but a tear gas (xylyl bromide) in World War I.

List

Related Research Articles

<span class="mw-page-title-main">Nitrogen</span> Chemical element with atomic number 7 (N)

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

A monopropellant rocket is a rocket that uses a single chemical as its propellant. Monopropellant rockets are commonly used as small attitude and trajectory control rockets in satellites, rocket upper stages, manned spacecraft, and spaceplanes.

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Hypergolic propellant</span> Type of rocket engine fuel

A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other.

Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with bipropellants that release energy through the chemical reaction between an oxidizer and a fuel. While stable under defined storage conditions, monopropellants decompose very rapidly under certain other conditions to produce a large volume of its own energetic (hot) gases for the performance of mechanical work. Although solid deflagrants such as nitrocellulose, the most commonly used propellant in firearms, could be thought of as monopropellants, the term is usually reserved for liquids in engineering literature.

<span class="mw-page-title-main">Dinitrogen tetroxide</span> Chemical compound

Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russian rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.

<span class="mw-page-title-main">Red fuming nitric acid</span> Chemical compound

Red fuming nitric acid (RFNA) is a storable oxidizer used as a rocket propellant. It consists of 84% nitric acid, 13% dinitrogen tetroxide and 1–2% water. The color of red fuming nitric acid is due to the dinitrogen tetroxide, which breaks down partially to form nitrogen dioxide. The nitrogen dioxide dissolves until the liquid is saturated, and produces toxic fumes with a suffocating odor. RFNA increases the flammability of combustible materials and is highly exothermic when reacting with water.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

T-Stoff (; 'substance T') was a stabilised high test peroxide used in Germany during World War II. T-Stoff was specified to contain 80% (occasionally 85%) hydrogen peroxide (H2O2), remainder water, with traces (<0.1%) of stabilisers. Stabilisers used included 0.0025% phosphoric acid, a mixture of phosphoric acid, sodium phosphate and 8-oxyquinoline, and sodium stannate.

<span class="mw-page-title-main">Hellmuth Walter</span> German rocket scientist

Hellmuth Walter was a German engineer who pioneered research into rocket engines and gas turbines. His most noteworthy contributions were rocket motors for the Messerschmitt Me 163 and Bachem Ba 349 interceptor aircraft, so-called Starthilfe jettisonable rocket propulsion units used for a variety of Luftwaffe aircraft during World War II, and a revolutionary new propulsion system for submarines known as air-independent propulsion (AIP).

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

Aerozine 50 is a 50:50 mix by weight of hydrazine and unsymmetrical dimethylhydrazine (UDMH), developed in the late 1950s by Aerojet General Corporation as a storable, high-energy, hypergolic fuel for the Titan II ICBM rocket engines. Aerozine continues in wide use as a rocket fuel, typically with dinitrogen tetroxide as the oxidizer, with which it is hypergolic. Aerozine 50 is more stable than hydrazine alone, and has a higher density and boiling point than UDMH alone.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Tetranitromethane or TNM is an organic oxidizer with chemical formula C(NO2)4. Its chemical structure consists of four nitro groups attached to one carbon atom. In 1857 it was first synthesised by the reaction of sodium cyanoacetamide with nitric acid.

<span class="mw-page-title-main">Ammonium dinitramide</span> Chemical compound

Ammonium dinitramide (ADN) is an inorganic compound with the chemical formula [NH4][N(NO2)2]. It is the ammonium salt of dinitraminic acid HN(NO2)2. It consists of ammonium cations [NH4]+ and dinitramide anions N(NO2)2. ADN decomposes under heat to leave only nitrogen, oxygen, and water.

<span class="mw-page-title-main">Aerojet LR87</span> American rocket engine family used on Titan missile first stages

The LR87 was an American liquid-propellant rocket engine used on the first stages of Titan intercontinental ballistic missiles and launch vehicles. Composed of twin motors with separate combustion chambers and turbopump machinery, it is considered a single unit and was never flown as a single combustion chamber engine or designed for this. The LR87 first flew in 1959.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

<span class="mw-page-title-main">Walter HWK 109-500</span> 1940s German aircraft rocket engine

The Walter HWK 109-500 was a liquid-fuelled rocket engine developed by Walter in Germany during the Second World War.

<span class="mw-page-title-main">Walter HWK 109-507</span>

The HWK 109-507 was a liquid-propellant rocket engine developed by Germany during World War II. It was used to propel the Hs 293 anti-ship guided missile.

References

  1. "Stoff". Duden (in German). Berlin: Bibliographisches Institut. Retrieved 29 March 2018.
  2. 1 2 3 Ford, Brian J.,Secret Weapons, 2011, p.33 ISBN   978 1 84908 390 4
  3. Forrest S. Forbes and Peter A. Van Splinter (2003). "Liquid Rocket Propellants", in Encyclopedia of Physical Science and Technology (Third Edition).
  4. T. W. Price and D. D. Evans (1968), The Status of Monopropellant Hydrazine Technology , NASA Technical Report 32-7227, p. 1. Retrieved 24 October 2021.
  5. Clark, John D. (1972). "9: What Ivan Was Doing". Ignition! An Informal History of Liquid Rocket Propellants (PDF). Rutgers University Press. p. 116. ISBN   0813507251.