Low-density lipoprotein receptor gene family

Last updated
Low-density lipoprotein receptor domain class A
PDB 1ldl EBI.jpg
Structure of a cysteine-rich repeat from the low-density lipoprotein receptor. [1]
Identifiers
SymbolLdl_recept_a
Pfam PF00057
InterPro IPR002172
SMART SM00192
PROSITE PS50068
SCOP2 1ldl / SCOPe / SUPFAM
Membranome 5
Low-density lipoprotein receptor domain class B
PDB 1n7d EBI.jpg
Structure of the LDL receptor extracellular domain at endosomal pH. [2]
Identifiers
SymbolLdl_recept_b
Pfam PF00058
Pfam clan 6CL0186
InterPro IPR000033
SMART SM00135
PROSITE PS51120
SCOP2 1lrx / SCOPe / SUPFAM

The low-density lipoprotein receptor gene family codes for a class of structurally related cell surface receptors that fulfill diverse biological functions in different organs, tissues, and cell types. [3] The role that is most commonly associated with this evolutionarily ancient family is cholesterol homeostasis (maintenance of appropriate concentration of cholesterol). In humans, excess cholesterol in the blood is captured by low-density lipoprotein (LDL) and removed by the liver via endocytosis of the LDL receptor. [4] Recent evidence indicates that the members of the LDL receptor gene family are active in the cell signalling pathways between specialized cells in many, if not all, multicellular organisms. [5] [6]

Contents

There are seven members of the LDLR family in mammals, namely:

Human proteins containing this domain

Listed below are human proteins containing low-density lipoprotein receptor domains:

Class A

C6; C7; 8A; 8B; C9; CD320; CFI; CORIN; DGCR2; HSPG2; LDLR; LDLRAD2; LDLRAD3; LRP1; LRP10; LRP11; LRP12; LRP1B; LRP2; LRP3; LRP4; LRP5; LRP6; LRP8; MAMDC4; MFRP; PRSS7; RXFP1; RXFP2; SORL1; SPINT1; SSPO; ST14; TMPRSS4; TMPRSS6; TMPRSS7; TMPRSS9 (serase-1B); VLDLR;

Class B

EGF; LDLR; LRP1; LRP10; LRP1B; LRP2; LRP4; LRP5; LRP5L; LRP6; LRP8; NID1; NID2; SORL1; VLDLR;

See also

Structure

Modular structure of LDL receptor family members. Domains depicted hatched are differentially spliced and occur in some receptor isoforms only Structure of LDL receptor family members.png
Modular structure of LDL receptor family members. Domains depicted hatched are differentially spliced and occur in some receptor isoforms only

The members of the LDLR family are characterized by distinct functional domains present in characteristic numbers. These modules are:

In addition to these domains which can be found in all receptors of the gene family, LDL receptor and certain isoforms of ApoER2 and VLDLR contain a short region which can undergo O-linked glycosylation, known as O-linked sugar domain. ApoER2 moreover, can harbour a cleavage site for the protease furin between type A and type B repeats which enables production of a soluble receptor fragment by furin-mediated processing.

Related Research Articles

Lipoprotein

A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid molecules in water, as in blood plasma or other extracellular fluids. They consist of a Triglyceride and Cholesterol center, surrounded by a phospholipid outer shell, with the hydrophilic portions oriented outward toward the surrounding water and lipophilic portions oriented inward toward the lipid center. A special kind of protein, called apolipoprotein, is embedded in the outer shell, both stabilising the complex and giving it a functional identity that determines its role.

Very-low-density lipoprotein (VLDL), density relative to extracellular water, is a type of lipoprotein made by the liver. VLDL is one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. VLDL is assembled in the liver from triglycerides, cholesterol, and apolipoproteins. VLDL is converted in the bloodstream to low-density lipoprotein (LDL) and intermediate-density lipoprotein (IDL). VLDL particles have a diameter of 30–80 nm. VLDL transports endogenous products, whereas chylomicrons transport exogenous (dietary) products. In the early 2010s both the lipid composition and protein composition of this lipoprotein were characterised in great detail.

Intermediate-density lipoproteins (IDLs) belong to the lipoprotein particle family and are formed from the degradation of very low-density lipoproteins as well as high-density lipoproteins. IDL is one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. Each native IDL particle consists of protein that encircles various lipids, enabling, as a water-soluble particle, these lipids to travel in the aqueous blood environment as part of the fat transport system within the body. Their size is, in general, 25 to 35 nm in diameter, and they contain primarily a range of triglycerides and cholesterol esters. They are cleared from the plasma into the liver by receptor-mediated endocytosis, or further degraded by hepatic lipase to form LDL particles.

Lipoprotein lipase

Lipoprotein lipase (LPL) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule. It is also involved in promoting the cellular uptake of chylomicron remnants, cholesterol-rich lipoproteins, and free fatty acids. LPL requires ApoC-II as a cofactor.

Michael Stuart Brown American geneticist and Nobel laureate

Michael Stuart Brown ForMemRS is an American geneticist and Nobel laureate. He was awarded the Nobel Prize in Physiology or Medicine with Joseph L. Goldstein in 1985 for describing the regulation of cholesterol metabolism.

LDL receptor

The low-density lipoprotein (LDL) receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich LDL. It is a cell-surface receptor that recognizes the apoprotein B100, which is embedded in the outer phospholipid layer of LDL particles. The receptor also recognizes the apoE protein found in chylomicron remnants and VLDL remnants (IDL). In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

Apolipoprotein B

Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene.

VLDL receptor

The very-low-density-lipoprotein receptor (VLDLR) is a transmembrane lipoprotein receptor of the low-density-lipoprotein (LDL) receptor family. VLDLR shows considerable homology with the members of this lineage. Discovered in 1992 by T. Yamamoto, VLDLR is widely distributed throughout the tissues of the body, including the heart, skeletal muscle, adipose tissue, and the brain, but is absent from the liver. This receptor has an important role in cholesterol uptake, metabolism of apolipoprotein E-containing triacylglycerol-rich lipoproteins, and neuronal migration in the developing brain. In humans, VLDLR is encoded by the VLDLR gene. Mutations of this gene may lead to a variety of symptoms and diseases, which include type I lissencephaly, cerebellar hypoplasia, and atherosclerosis.

Familial hypercholesterolemia Genetic disorder characterized by high cholesterol levels

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein, in the blood and early cardiovascular disease.The most common mutations diminish the number of functional LDL receptors in the liver. Since the underlying body biochemistry is slightly different in individuals with FH, their high cholesterol levels are less responsive to the kinds of cholesterol control methods which are usually more effective in people without FH. Nevertheless, treatment is usually effective.

LDL-receptor-related protein-associated protein

Low density lipoprotein receptor-related protein-associated protein 1 also known as LRPAP1 or RAP is a chaperone protein which in humans is encoded by the LRPAP1 gene.

Low-density lipoprotein receptor-related protein 8 Cell surface receptor, part of the low-density lipoprotein receptor family

Low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), is a protein that in humans is encoded by the LRP8 gene. ApoER2 is a cell surface receptor that is part of the low-density lipoprotein receptor family. These receptors function in signal transduction and endocytosis of specific ligands. Through interactions with one of its ligands, reelin, ApoER2 plays an important role in embryonic neuronal migration and postnatal long-term potentiation. Another LDL family receptor, VLDLR, also interacts with reelin, and together these two receptors influence brain development and function. Decreased expression of ApoER2 is associated with certain neurological diseases.

OLR1

Oxidized low-density lipoprotein receptor 1 also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.

LRP2

Low density lipoprotein receptor-related protein 2 also known as LRP2 or megalin is a protein which in humans is encoded by the LRP2 gene.

LRP1

Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.

PCSK9 Mammalian protein found in humans

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans on chromosome 1. It is the 9th member of the proprotein convertase family of proteins that activate other proteins. Similar genes (orthologs) are found across many species. As with many proteins, PCSK9 is inactive when first synthesized, because a section of peptide chains blocks their activity; proprotein convertases remove that section to activate the enzyme. The PCSK9 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

LRP5

Low-density lipoprotein receptor-related protein 5 is a protein that in humans is encoded by the LRP5 gene. LRP5 is a key component of the LRP5/LRP6/Frizzled co-receptor group that is involved in canonical Wnt pathway. Mutations in LRP5 can lead to considerable changes in bone mass. A loss-of-function mutation causes osteoporosis-pseudoglioma, while a gain-of-function mutation causes drastic increases in bone mass.

LRP6

Low-density lipoprotein receptor-related protein 6 is a protein that in humans is encoded by the LRP6 gene. LRP6 is a key component of the LRP5/LRP6/Frizzled co-receptor group that is involved in canonical Wnt pathway.

SNX17

Sorting nexin-17 is a protein that in humans is encoded by the SNX17 gene.

LRP1B

Low-density lipoprotein receptor-related protein 1B is a protein that in humans is encoded by the LRP1B gene.

YWTD repeats are four-stranded beta-propeller repeats found in low-density lipoprotein receptors (LDLR). The six YWTD repeats together fold into a six-bladed beta-propeller. Each blade of the propeller consists of four antiparallel beta-strands; the innermost strand of each blade is labeled 1 and the outermost strand, 4. The sequence repeats are offset with respect to the blades of the propeller, such that any given 40-residue YWTD repeat spans strands 24 of one propeller blade and strand 1 of the subsequent blade. This offset ensures circularization of the propeller because the last strand of the final sequence repeat acts as an innermost strand 1 of the blade that harbors strands 24 from the first sequence repeat. The repeat is found in a variety of proteins that include, vitellogenin receptor from Drosophila melanogaster, low-density lipoprotein (LDL) receptor, preproepidermal growth factor, and nidogen (entactin).

References

  1. Daly NL, Scanlon MJ, Djordjevic JT, Kroon PA, Smith R (July 1995). "Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor". Proc. Natl. Acad. Sci. U.S.A. 92 (14): 6334–8. Bibcode:1995PNAS...92.6334D. doi: 10.1073/pnas.92.14.6334 . PMC   41512 . PMID   7603991.
  2. Rudenko G, Henry L, Henderson K, et al. (December 2002). "Structure of the LDL receptor extracellular domain at endosomal pH" (PDF). Science. 298 (5602): 2353–8. Bibcode:2002Sci...298.2353R. doi:10.1126/science.1078124. PMID   12459547. S2CID   17712211.
  3. Nykjaer A, Willnow TE (June 2002). "The low-density lipoprotein receptor gene family: a cellular Swiss army knife?". Trends Cell Biol. 12 (6): 273–80. doi:10.1016/S0962-8924(02)02282-1. PMID   12074887.
  4. Li Y, Lu W, Marzolo MP, Bu G (May 2001). "Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates". J. Biol. Chem. 276 (21): 18000–6. doi: 10.1074/jbc.M101589200 . PMID   11279214.
  5. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (August 2000). "Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction". J. Biol. Chem. 275 (33): 25616–24. doi: 10.1074/jbc.M000955200 . PMID   10827173.
  6. Beffert U, Stolt PC, Herz J (March 2004). "Functions of lipoprotein receptors in neurons". J. Lipid Res. 45 (3): 403–9. doi: 10.1194/jlr.R300017-JLR200 . PMID   14657206.