Lumped parameter cardiovascular model

Last updated
Example of lumped parameter cardiovascular model. Each compartment is inside the green boxes. The parameters of the model are highlighted in black, while the blue are highlighted the blood pressures and fluxes throughout the cardiovascular system. LumpedParameterCardiovascularModel.png
Example of lumped parameter cardiovascular model. Each compartment is inside the green boxes. The parameters of the model are highlighted in black, while the blue are highlighted the blood pressures and fluxes throughout the cardiovascular system.

A lumped parameter cardiovascular model is a zero-dimensional mathematical model used to describe the hemodynamics of the cardiovascular system. Given a set of parameters that have a physical meaning (e.g. resistances to blood flow), it allows to study the changes in blood pressures or fluxes throughout the cardiovascular system. [1] [2] Modifying the parameters, it is possible to study the effects of a specific disease. For example, arterial hypertension is modeled increasing the arterial resistances of the model. [1]

Contents

The lumped parameter model is used to study the hemodynamics of a three-dimensional space (the cardiovascular system) by means of a zero-dimensional space that exploits the analogy between pipes and electrical circuits. The reduction from three to zero dimensions is performed by splitting the cardiovascular system into different compartments, each of them representing a specific component of the system, e.g. right atrium or systemic arteries. Each compartment is made up of simple circuital components, like resistances or capacitors, while the blood flux behaves like the current flowing through the circuit according to Kirchoff's laws. [2]

The lumped parameter model consists in a system of ordinary differential equations that describes the evolution in time of the volumes of the heart chambers, and the blood pressures and fluxes through the blood vessels. [3]

Model description

The lumped parameter model consists in a system of ordinary differential equations that adhere to the principles of conservation of mass and momentum. The model is obtained exploiting the electrical analogy where the current represents the blood flow, the voltage represents the pressure difference, the electric resistance plays the role of the vascular resistance (determined by the section and the length of the blood vessel), the capacitance plays the role of the vascular compliance (the ability of the vessel to distend and increase volume with increasing transmural pressure, that is the difference in pressure between two sides of a vessel wall) and the inductance represents the blood inertia. Each heart chamber is modeled by means of the elastances that describe the contractility of the cardiac muscle and the unloaded volume, that is the blood volume contained in the chamber at zero-pressure. The valves are modeled as diodes. The parameter of the model are the resistances, the capacitances, the inductances and the elastances. The unknowns of the system are the blood volumes inside each heart chamber, the blood pressures and fluxes inside each compartment of the circulation. The system of ordinary differential equations is solved by means of a numerical method for temporal discretization, e.g., a Runge-Kutta method. [3]

The cardiovascular system is split into different compartments:

Three element RLC Windkessel. Three element RLC Windkessel.png
Three element RLC Windkessel.

Downstream of the left atrium and ventricle and right atrium and ventricle there are the four cardiac valves: mitral, aorta, tricuspid and pulmonary valves, respectively. [3]

The splitting of the pulmonary and systemic circulation is not fixed, for example, if the interest of the study is in systemic capillaries, the compartment accounting for the systemic capillaries can be added to the lumped parameter model. Each compartment is described by a Windkessel circuit with the number of elements depending on the specific compartment. The ordinary differential equations of the model are derived from the Windkessel circuits and the Kirchoff's laws. [4]

In what follows the focus will be on a specific lumped parameter model. The compartments considered are the four heart chambers, the systemic and pulmonary arteries and veins. [5]

Heart chambers equations

The parameters related to the four heart chambers are the passive and active elastances and (where the subscripts vary among and if the elastances refer to the right atrium or ventricle or the left atrium or ventricle, respectively) and the unloaded volumes . The dynamics of the heart chambers are described by the time-dependent elastance: [5]

where is a periodic (with period of an heartbeat) time dependent function ranging from to that accounts for the activation phases of the heart during a heartbeat. From the above equation, the passive elastance represents the minimum elastance of the heart chamber, whereas the sum of and the maximum elastance of it. The time-dependent elastance allows the computation of the pressure inside a specific heart chamber as follows: [5]

where is the volume of blood contained in the heart chamber and the volumes for each chamber are the solutions to the following ordinary differential equations that account for inward and outward blood fluxes associated with the heart chamber: [5]

where and are the fluxes through the mitral, aortic, tricuspid and pulmonary valves respectively and and are the fluxes through the pulmonary and systemic veins, respectively. [5]

Valves equations

The valves are modeled as diodes and the blood fluxes across the valves depend on the pressure jumps between the upstream and downstream compartment: [5]

where the pressure inside each heart chamber is defined in the previous section, and are the time-dependent pressures inside the systemic and pulmonary artery compartment and is the flux across the valve depending on the pressure jump: [5]

where and are the resistances of the valves when they are open and closed respectively. [5]

Circulation compartments equations

Each compartment of the blood vessels is characterized by a combination of resistances, capacitances and inductances. For example, the arterial systemic circulation can be described by three parameters and that represent the arterial systemic resistance, capacitance and inductance. The ordinary differential equations that describes the systemic arterial circulation are: [5]

where is the blood flux across the systemic arterial compartment and is the pressure inside the veins compartment. [5]

Analogous equations with similar notation hold for the other compartments describing the blood circulation. [5]

Ordinary differential equation system

Assembling the equations described above the following system is obtained: it holds [5]

Outputs of the lumped parameter cardiovascular model: pressures, blood volumes inside the heart chambers and blood fluxes. OutputLumpedParameterModel.png
Outputs of the lumped parameter cardiovascular model: pressures, blood volumes inside the heart chambers and blood fluxes.

with the final time. The first two equations are related to the volumes in the left atrium and ventricles respectively. The equations from the third to the sixth are related to the pressures, and fluxes of the systemic arterial and venous systems. The last equations are related to the right heart and the pulmonary circulation in an analogous way. The system is completed with initial conditions for each of the unknowns. [5]

From a mathematical point of view, the well-posedness of the problem is a consequence of the Cauchy–Lipschitz theorem, so its solution exists and it is unique. The solution of the system is approximated by means of a numerical method. The numerical simulation has to be computed for more than heartbeats (the final time depends on the number of heartbeats and the heart rate) to approach the limit cycle of the dynamical system, so that the solution behaves in a similar way to a periodic function emulating the periodicity of the cardiac cycle. [5]

Further developments

The model described above is a specific lumped parameter model. It can be easily modified adding or removing compartments or circuit components inside any compartment as needed. The equations that govern the new or the modified compartments are the Kirchoff's laws as before. [4]

The cardiovascular lumped parameter models can be enhanced adding a lumped parameter model for the respiratory system. As for the cardiovascular system, the respiratory system is split into different compartments modeling, for example, the larynx, the pharinx or the trachea. [6] Moreover, the cardiopulmonary model can be combined with a model for blood oxygenation to study, for example, the levels of blood saturation. [7] [8]

There are several lumped parameter models and the choice of the model depends on the purpose of the work or the research. Complex models can describe different dynamics, but the increase in complexity entails a larger computational cost to solve the system of differential equations. [9] [10] [11]

Some of the 0-D compartments of the lumped parameter model could be substituted by -dimensional components () to describe geometrically a specific component of the cardiovascular system (e.g., the 0-D compartment of the left ventricle can be substituted by a 3-D representation of it). As a consequence, the system of equations will include also partial differential equations to describe the dimensional components and it will entail a larger computational cost to be numerically solved. [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Ideal gas law</span> Equation of the state of a hypothetical ideal gas

The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

<span class="mw-page-title-main">Lumped-element model</span> Simplification of a physical system into a network of discrete components

The lumped-element model is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems, mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R,. People may progress between compartments. The order of the labels usually shows the flow patterns between the compartments; for example SEIS means susceptible, exposed, infectious, then susceptible again.

Compliance is the ability of a hollow organ (vessel) to distend and increase volume with increasing transmural pressure or the tendency of a hollow organ to resist recoil toward its original dimensions on application of a distending or compressing force. It is the reciprocal of "elastance", hence elastance is a measure of the tendency of a hollow organ to recoil toward its original dimensions upon removal of a distending or compressing force.

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

<span class="mw-page-title-main">Physiologically based pharmacokinetic modelling</span>

Physiologically based pharmacokinetic (PBPK) modeling is a mathematical modeling technique for predicting the absorption, distribution, metabolism and excretion (ADME) of synthetic or natural chemical substances in humans and other animal species. PBPK modeling is used in pharmaceutical research and drug development, and in health risk assessment for cosmetics or general chemicals.

In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property, but which are not generally solvable in terms of elementary functions. They were discovered by Émile Picard (1889), Paul Painlevé , Richard Fuchs (1905), and Bertrand Gambier (1910).

In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often instead called a fold bifurcation. Another name is blue sky bifurcation in reference to the sudden creation of two fixed points.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

A multi-compartment model is a type of mathematical model used for describing the way materials or energies are transmitted among the compartments of a system. Sometimes, the physical system that we try to model in equations is too complex, so it is much easier to discretize the problem and reduce the number of parameters. Each compartment is assumed to be a homogeneous entity within which the entities being modeled are equivalent. A multi-compartment model is classified as a lumped parameters model. Similar to more general mathematical models, multi-compartment models can treat variables as continuous, such as a differential equation, or as discrete, such as a Markov chain. Depending on the system being modeled, they can be treated as stochastic or deterministic.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.

A Logan plot is a graphical analysis technique based on the compartment model that uses linear regression to analyze pharmacokinetics of tracers involving reversible uptake. It is mainly used for the evaluation of nuclear medicine imaging data after the injection of a labeled ligand that binds reversibly to specific receptor or enzyme.

Q-vectors are used in atmospheric dynamics to understand physical processes such as vertical motion and frontogenesis. Q-vectors are not physical quantities that can be measured in the atmosphere but are derived from the quasi-geostrophic equations and can be used in the previous diagnostic situations. On meteorological charts, Q-vectors point toward upward motion and away from downward motion. Q-vectors are an alternative to the omega equation for diagnosing vertical motion in the quasi-geostrophic equations.

References

  1. 1 2 Shim, Eun Bo; Sah, Jong Youb; Youn, Chan Hyun (2004). "Mathematical Modeling of Cardiovascular System Dynamics Using a Lumped Parameter Method". The Japanese Journal of Physiology. 54 (6): 545–553. doi: 10.2170/jjphysiol.54.545 . ISSN   0021-521X.
  2. 1 2 Shi, Yubing; Lawford, Patricia; Hose, Rodney (2011). "Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System". BioMedical Engineering OnLine. 10 (1). doi:10.1186/1475-925X-10-33. ISSN   1475-925X. PMC   3103466 . PMID   21521508.
  3. 1 2 3 Shim, Eun Bo; Sah, Jong Youb; Youn, Chan Hyun (2004). "Mathematical Modeling of Cardiovascular System Dynamics Using a Lumped Parameter Method". The Japanese Journal of Physiology. 54 (6): 545–553. doi: 10.2170/jjphysiol.54.545 . ISSN   0021-521X. PMID   15760487.
  4. 1 2 Shi, Yubing; Lawford, Patricia; Hose, Rodney (2011). "Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System". BioMedical Engineering OnLine. 10 (1): 33. doi:10.1186/1475-925X-10-33. ISSN   1475-925X. PMC   3103466 . PMID   21521508.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Dedè, Luca; Regazzoni, Francesco; Vergara, Christian; Zunino, Paolo; Guglielmo, Marco; Scrofani, Roberto; Fusini, Laura; Cogliati, Chiara; Pontone, Gianluca; Quarteroni, Alfio (2021). "Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study". Mathematical Biosciences and Engineering. 18 (4): 3364–3383. doi:10.3934/mbe.2021168. hdl: 2434/843779 . ISSN   1551-0018. PMID   34198390. S2CID   234973850.
  6. Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen (2018-06-01). "An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans". Computer Methods and Programs in Biomedicine. 159: 167–183. doi:10.1016/j.cmpb.2018.03.008. ISSN   0169-2607. PMID   29650311. S2CID   4802953.
  7. Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W. (2016-04-01). "An integrated mathematical model of the human cardiopulmonary system: model development". American Journal of Physiology. Heart and Circulatory Physiology. 310 (7): H899–H921. doi: 10.1152/ajpheart.00230.2014 . ISSN   0363-6135. PMID   26683899.
  8. Lu, K.; Clark, J. W.; Ghorbel, F. H.; Ware, D. L.; Bidani, A. (2001-12-01). "A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver". American Journal of Physiology. Heart and Circulatory Physiology. 281 (6): H2661–H2679. doi: 10.1152/ajpheart.2001.281.6.H2661 . ISSN   0363-6135. PMID   11709436. S2CID   8246967.
  9. De Lazzari, C.; Darowski, M.; Ferrari, G.; Pisanelli, D.M.; Tosti, G. (2006). "Modelling in the study of interaction of Hemopump device and artificial ventilation". Computers in Biology and Medicine. 36 (11): 1235–1251. doi:10.1016/j.compbiomed.2005.08.001. PMID   16202402.
  10. Shi, Yubing; Korakianitis, Theodosios (2006). "Numerical Simulation of Cardiovascular Dynamics With Left Heart Failure and In-series Pulsatile Ventricular Assist Device". Artificial Organs. 30 (12): 929–948. doi:10.1111/j.1525-1594.2006.00326.x. ISSN   0160-564X. PMID   17181834.
  11. Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G. (2002-03-01). "Computational modeling of cardiovascular response to orthostatic stress". Journal of Applied Physiology. 92 (3): 1239–1254. doi:10.1152/japplphysiol.00241.2001. ISSN   8750-7587. PMID   11842064.
  12. Blanco, Pablo J.; Feijóo, Raúl A. (2010). "A 3D-1D-0D Computational Model for the Entire Cardiovascular System". Mecánica Computacional. 29 (59): 5887–5911.
  13. Baillargeon, Brian; Rebelo, Nuno; Fox, David D.; Taylor, Robert L.; Kuhl, Ellen (2014). "The Living Heart Project: A robust and integrative simulator for human heart function". European Journal of Mechanics - A/Solids. 48: 38–47. Bibcode:2014EJMS...48...38B. doi:10.1016/j.euromechsol.2014.04.001. PMC   4175454 . PMID   25267880.

Further reading