Macrolophus pygmaeus

Last updated

Macrolophus pygmaeus
20170611 Macrolophus pygmeus Lohja Finland Petro Pynnonen.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hemiptera
Suborder: Heteroptera
Family: Miridae
Genus: Macrolophus
Species:
M. pygmaeus
Binomial name
Macrolophus pygmaeus
(Rambur, 1839)
Synonyms [1]
  • Macrolophus brevicornis Knight, 1926

Macrolophus pygmaeus is a species of plant bug in the family Miridae. [1] [2] [3] [4] It is found in Europe except the high north, south to north Africa and east to Asia Minor then to Central Asia. [1] This species is omnivorous, preying on Tuta absoluta eggs and larvae, [5] Ephestia kuehniella eggs, Macrosiphum euphorbiae nymphs, [6] and plants such as Vicia fava. When feeding on plants, M. pygmaeus consumes extrafloral nectar. [7] Its varied diet has created interest in M. pygmaeus as a pest control insect for the prior mentioned species.

Contents

Seismic communication

Males use vibrational communication in their courtship process, actively walking down the host plant until a female is found. Macrolophus pygmaeus males produce a vibrational sound called a “yelp” that is associated with male-male interactions. The yelp is also associated with physical contact between the two males, and then the males running away while emitting yelps. The duration of the signal as well can affect the female’s response, and it was shown that females typically prefer longer calls. [8]

20170609 Macrolophus pygmeus Lohja Finland Petro Pynnonen.jpg

Related Research Articles

<span class="mw-page-title-main">Parasitism</span> Relationship between species where one organism lives on or in another organism, causing it harm

Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Hemiptera</span> Order of insects often called true bugs

Hemiptera is an order of insects, commonly called true bugs, comprising over 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, assassin bugs, bed bugs, and shield bugs. They range in size from 1 mm (0.04 in) to around 15 cm (6 in), and share a common arrangement of piercing-sucking mouthparts. The name "true bugs" is often limited to the suborder Heteroptera.

<span class="mw-page-title-main">Sawfly</span> Suborder of insects

Sawflies are wasp-like insects that are in the suborder Symphyta within the order Hymenoptera, alongside ants, bees, and wasps. The common name comes from the saw-like appearance of the ovipositor, which the females use to cut into the plants where they lay their eggs. The name is associated especially with the Tenthredinoidea, by far the largest superfamily in the suborder, with about 7,000 known species; in the entire suborder, there are 8,000 described species in more than 800 genera. Symphyta is paraphyletic, consisting of several basal groups within the order Hymenoptera, each one rooted inside the previous group, ending with the Apocrita which are not sawflies.

<i>Agalychnis callidryas</i> Species of amphibian

Agalychnis callidryas, commonly known as the red-eyed tree frog, is a species of frog in the subfamily Phyllomedusinae. It is one of the most recognizable frogs. It is native to forests from Central America to north-western South America. This species is known for its bright coloration, namely its vibrant green body with blue and yellow stripes on the side. It has a white underside, brightly red and orange colored feet, and is named after its distinctive bright red eyes.

<span class="mw-page-title-main">Parasitoid wasp</span> Group of wasps

Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.

<span class="mw-page-title-main">Cannibalism</span> Consuming another individual of the same species as food

Cannibalism is the act of consuming another individual of the same species as food. Cannibalism is a common ecological interaction in the animal kingdom and has been recorded in more than 1,500 species. Human cannibalism is well documented, both in ancient and in recent times.

<i>Spodoptera litura</i> Species of moth

Spodoptera litura, otherwise known as the tobacco cutworm or cotton leafworm, is a nocturnal moth in the family Noctuidae. S. litura is a serious polyphagous pest in Asia, Oceania, and the Indian subcontinent that was first described by Johan Christian Fabricius in 1775. Its common names reference two of the most frequent host plants of the moth. In total, 87 species of host plants that are infested by S. litura are of economic importance. The species parasitize the plants through the larvae vigorous eating patterns, oftentimes leaving the leaves completely destroyed. The moth's effects are quite disastrous, destroying economically important agricultural crops and decreasing yield in some plants completely. Their potential impact on the many different cultivated crops, and subsequently the local agricultural economy, has led to serious efforts to control the pests.

<span class="mw-page-title-main">Aggressive mimicry</span> Deceptive mimicry of a harmless species by a predator

Aggressive mimicry is a form of mimicry in which predators, parasites, or parasitoids share similar signals, using a harmless model, allowing them to avoid being correctly identified by their prey or host. Zoologists have repeatedly compared this strategy to a wolf in sheep's clothing. In its broadest sense, aggressive mimicry could include various types of exploitation, as when an orchid exploits a male insect by mimicking a sexually receptive female, but will here be restricted to forms of exploitation involving feeding. For example, indigenous Australians who dress up as and imitate kangaroos when hunting would not be considered aggressive mimics, nor would a human angler, though they are undoubtedly practising self-decoration camouflage. Treated separately is molecular mimicry, which shares some similarity; for instance a virus may mimic the molecular properties of its host, allowing it access to its cells. An alternative term, Peckhamian mimicry, has been suggested, but it is seldom used.

<i>Adelphocoris lineolatus</i> Species of true bug

Adelphocoris lineolatus, is commonly known as the Lucerne bug or the alfalfa plant bug, and belongs to the family Miridae. It is an agricultural pest causing vast amounts of damage to numerous crops, but primarily to alfalfa crops around the globe.

<span class="mw-page-title-main">Coccinellidae</span> Family of beetles

Coccinellidae is a widespread family of small beetles. They are commonly known as ladybugs in North America and ladybirds in the United Kingdom; "lady" refers to mother Mary. Entomologists use the names ladybird beetles or lady beetles to avoid confusion with true bugs. The more than 6,000 described species have a global distribution and are found in a variety of habitats. They are oval beetles with a domed back and flat underside. Many of the species have conspicuous aposematic (warning) colours and patterns, such as red with black spots, that warn potential predators that they taste bad.

<span class="mw-page-title-main">Wasp</span> Group of insects

A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.

<span class="mw-page-title-main">Insect</span> Class of arthropods

Insects are hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body, three pairs of jointed legs, compound eyes, and a pair of antennae. Insects are the most diverse group of animals, with more than a million described species; they represent more than half of all animal species.

<i>Drosophila suzukii</i> Species of fly

Drosophila suzukii, commonly called the spotted wing drosophila or SWD, is a fruit fly. D. suzukii, originally from southeast Asia, is becoming a major pest species in America and Europe, because it infests fruit early during the ripening stage, in contrast with other Drosophila species that infest only rotting fruit.

<span class="mw-page-title-main">Seismic communication</span>

Seismic or vibrational communication is a process of conveying information through mechanical (seismic) vibrations of the substrate. The substrate may be the earth, a plant stem or leaf, the surface of a body of water, a spider's web, a honeycomb, or any of the myriad types of soil substrates. Seismic cues are generally conveyed by surface Rayleigh or bending waves generated through vibrations on the substrate, or acoustical waves that couple with the substrate. Vibrational communication is an ancient sensory modality and it is widespread in the animal kingdom where it has evolved several times independently. It has been reported in mammals, birds, reptiles, amphibians, insects, arachnids, crustaceans and nematode worms. Vibrations and other communication channels are not necessarily mutually exclusive, but can be used in multi-modal communication.

A nuptial gift is a nutritional gift given by one partner in some animals' sexual reproduction practices.

<i>Pisaurina mira</i> Species of spider

Pisaurina mira, also known as the American nursery web spider, is a species of spider in the family Pisauridae. They are often mistaken for wolf spiders (Lycosidae) due to their physical resemblance. P. mira is distinguished by its unique eye arrangement of two rows. 

Dicyphus hesperus is a species of true bug in the family Miridae. It is a generalist predator of other insects and also feeds on plant tissues. It is native to North America and has been used there in biological control of agricultural pests, especially whitefly on tomatoes.

Macrolophus caliginosus is a species of true bug in the family Miridae. It is omnivorous and both preys on insects and feeds on plant tissues. It is used in Europe in the biological control of whitefly in tomatoes grown under glass.

<i>Macrolophus</i> Genus of true bugs

Macrolophus is a genus of plant bugs in the family Miridae. There are at least 20 described species in Macrolophus.

References

  1. 1 2 3 "Macrolophus pygmaeus Report". Integrated Taxonomic Information System. Retrieved 2018-05-03.
  2. "Macrolophus pygmaeus species details". Catalogue of Life. Retrieved 2018-05-03.
  3. "Macrolophus pygmaeus". GBIF. Retrieved 2018-05-03.
  4. "Macrolophus pygmaeus Species Information". BugGuide.net. Retrieved 2018-05-03.
  5. Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas (December 2014). "New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey". Die Naturwissenschaften. 101 (12): 1075–1083. Bibcode:2014NW....101.1075C. doi:10.1007/s00114-014-1246-3. ISSN   1432-1904. PMID   25331170.
  6. Sylla, Serigne; Brévault, Thierry; Diarra, Karamoko; Bearez, Philippe; Desneux, Nicolas (21 November 2016). "Life-History Traits of Macrolophus pygmaeus with Different Prey Foods". PLOS ONE. 11 (11): e0166610. Bibcode:2016PLoSO..1166610S. doi: 10.1371/journal.pone.0166610 . ISSN   1932-6203. PMC   5117678 . PMID   27870857.
  7. Portillo, Nati; Alomar, Oscar; Wäckers, Felix (March 2012). "Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): nutritional redundancy or nutritional benefit?". Journal of Insect Physiology. 58 (3): 397–401. Bibcode:2012JInsP..58..397P. doi:10.1016/j.jinsphys.2011.12.013. ISSN   1879-1611. PMID   22245441 . Retrieved 25 August 2023.
  8. Gemeno, César; Baldo, Giordana; Nieri, Rachele; Valls, Joan; Alomar, Oscar; Mazzoni, Valerio (July 2015). "Substrate-Borne Vibrational Signals in Mating Communication of Macrolophus Bugs". Journal of Insect Behavior. 28 (4): 482–498. Bibcode:2015JIBeh..28..482G. doi:10.1007/s10905-015-9518-0. hdl: 10459.1/72205 . ISSN   0892-7553. S2CID   86053.

Further reading