Metaspriggina

Last updated

Metaspriggina
Temporal range: Middle Cambrian
Metaspriggina and Maripolia.png
An artist's concept of Metaspriggina based on Conway Morris, Caron. [1]
Scientific classification
Kingdom:
Phylum:
Infraphylum:
Family:
Metaspriggiidae

Simonetta & Insom 1993
Genus:
Metaspriggina

Simonetta & Insom 1993
Binomial name
Metaspriggina walcotti
Simonetta & Insom 1993 [2] [3]

Metaspriggina is a genus of chordate initially known from two specimens in the Middle Cambrian Burgess Shale [4] and 44 specimens found in 2012 at the Marble Canyon bed in Kootenay National Park. [1]

Contents

Life reconstruction of Metaspriggina walcotti Metaspriggina NT small.jpg
Life reconstruction of Metaspriggina walcotti
Reconstruction of Metaspriggina based on the Burgess Shale specimens available in 2009. Metaspriggina.png
Reconstruction of Metaspriggina based on the Burgess Shale specimens available in 2009.
The Metaspriggina fossil. Metaspriggina.jpg
The Metaspriggina fossil.

Whilst named after the Ediacaran organism Spriggina , later work has shown the two to be unrelated. [4] Metaspriggina is considered to represent a primitive chordate, possibly transitional between cephalochordates and the earliest vertebrates, albeit this has been questioned because it seems to possess most of the characteristics attributed to craniates. It lacked fins and it had a weakly developed cranium, but it did possess two well-developed upward-facing eyes with nostrils behind them.

Metaspriggina also possessed a notochord, along with seven pairs of pharyngeal bars, possibly made of cartilage. Surprisingly they were not formed from a singular bone, but they were formed of multiple separate pairs of bones, along with first two of them that were enlarged compared to the others and that seemed to not support any gills, all of these characteristics suggesting a "distant link to gnathostomatans". The largest specimens are 10 centimetres (3.9 in) in length. Originally believed to be free-swimming but occasionally found on the sea floor, [5] [6] the fossils from Marble Canyon showing the presence of eyes and their placement suggests it lived as a filter-feeder swimming above the sea floor.

The exceptional preservation at Marble Canyon also preserved muscle detail, showing that the animal moved with a side-to-side swimming motion. [1] In Metaspriggina the myomeral configuration has an additional ventral chevron, and a clear dorsal bend which defines a W-shaped arrangement that is directly comparable to fish. [1]

The discovery of pharyngeal bars (gill bars) makes Metaspriggina the oldest known animal to have this feature. [1] The first pair of pharyngeal bars later evolved to form the upper and lower jaws of vertebrates. The second pair evolved to form the hyoid arch. In vertebrates this supports the jaws and the hyoid bone anchors the base of the tongue.

The discovery of Metaspriggina makes the origins of gnathostomatans a little more confusing, as it was roughly contemporary with Pikaia . As Pikaia did not have gill bars, unlike Branchiostoma , [7] there are two possible explanations for this. One is that the Chordate phylum split in four before Metaspriggina lived, with Metaspriggina and the other craniates (both gnathostomatans and Agnatha) grouped with Branchiostoma and the cephalochordates, and Pikaia out on a side branch. Metaspriggina is here a direct ancestor of all gnathostomatans, with the Agnatha the most closely related group. In this explanation, Pikaia is not a close relative of Craniates at all, nor of cephalochordates, but something even more primitive, and the defining feature of the craniate-cephalochordate group is their gill bars.

The other explanation is that Metaspriggina was the ancestor of all gnathostomatans, again closely related to the Agnatha to form the Chordata. However, instead of being a very primitive relative, Pikaia was the ancestor of all cephalochordates, and the gill bars evolved convergently in them somewhere between Pikaia and Branchiostoma. This might explain why Branchiostoma has such a different number of gill bars to chordates (or at least their embryos). [7] Considering that conodonts, the teeth elements of a type of extinct fish belonging to the Agnatha, are already found in Cambrian stage 2 (521-529 MA BP), some 20 million years before the Burgess shale, this latter explanation does not stand. The split between Agnatha and other chordates must therefore have happened earlier, during Cambrian stage 1 or even Ediacaran times.

Phylogenetic analysis suggests that Metaspriggiidae are "stem-vertebrates" along with Haikouella and the Myllokunmingiids leading to the crown vertebrates, who divided themselves into two main directions: jawless fishes like conodonts leading to the Cyclostomi, and jawless fishes like the Cephalaspidomorph who developed armors and jaws to become the gnathostomes. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomic bilaterial animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail.

<span class="mw-page-title-main">Vertebrate</span> Subphylum of chordates with backbones

Vertebrates are deuterostomal animals with bony or cartilaginous axial endoskeleton — known as the vertebral column, spine or backbone — around and along the spinal cord, including all fish, amphibians, reptiles, birds and mammals. The vertebrates consist of all the taxa within the subphylum Vertebrata and represent the overwhelming majority of the phylum Chordata, with currently about 69,963 species described.

<span class="mw-page-title-main">Maotianshan Shales</span> Series of Early Cambrian deposits in the Chiungchussu Formation

The Maotianshan Shales (帽天山页岩) are a series of Early Cambrian sedimentary deposits in the Chiungchussu Formation, famous for their Konservat Lagerstätten, deposits known for the exceptional preservation of fossilized organisms or traces. The Maotianshan Shales form one of some forty Cambrian fossil locations worldwide exhibiting exquisite preservation of rarely preserved, non-mineralized soft tissue, comparable to the fossils of the Burgess Shale of British Columbia, Canada. They take their name from Maotianshan Hill in Chengjiang County, Yunnan Province, China.

<span class="mw-page-title-main">Agnatha</span> Infraphylum of jawless fish

Agnatha is a paraphyletic infraphylum of non-gnathostome vertebrates, or jawless fish, in the phylum Chordata, subphylum Vertebrata, consisting of both living (cyclostomes) and extinct. Among recent animals, cyclostomes are sister to all vertebrates with jaws, known as gnathostomes.

<span class="mw-page-title-main">Gnathostomata</span> Infraphylum of vertebrates

Gnathostomata are the jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all living vertebrates, including humans. Most gnathostomes have retained ancestral traits like true teeth, a stomach, and paired appendages. Other traits are elastin, a horizontal semicircular canal of the inner ear, myelin sheaths of neurons, and an adaptive immune system which has discrete lymphoid organs, and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

<i>Haikouichthys</i> Extinct genus of jawless fishes

Haikouichthys is an extinct genus of craniate that lived 518 million years ago, during the Cambrian explosion of multicellular life. The type species, Haikouichthys ercaicunensis, was first described in 1999. Haikouichthys had a defined skull and other characteristics that have led paleontologists to label it a true craniate, and even to be popularly characterized as one of the earliest fishes. More than 500 specimens were referred to this taxon and phylogenetic analyses indicates that the animal is probably a basal stem-craniate. Some researchers have considered Haikouichthys to be synonymous with the other primitive chordate Myllokunmingia, but subsequent studies led by the British paleontologist Simon Conway Morris identified both genera to be distinct, separate taxa on the basis of different gill arrangement, the absence of branchial rays in Myllokunmingia and the myomeres having a more acute shape in Haikouichthys.

Myllokunmingia is a genus of basal chordate from the Lower Cambrian Maotianshan shales of China 518 mya and is thought to be a vertebrate, although this is not conclusively proven. The type species M. fengjiaoa is 28 mm long and 6 mm high. It is among the oldest possible craniates, found in the lower Cambrian Chengjiang. It appears to have a skull and skeletal structures made of cartilage. There is no sign of biomineralization of the skeletal elements. The holotype was found in the Yuanshan member of the Qiongzhusi Formation in the Eoredlichia Zone near Haikou at Ercaicun, Kunming City, Yunnan, China. Some researchers have considered the other primitive chordate Haikouichthys to be synonymous with this taxon, but subsequent studies led by the British paleontologist Simon Conway Morris identified both genera to be distinct, separate taxa on the basis of different gill arrangement, the absence of branchial rays in Myllokunmingia and the myomeres having a more acute shape in Haikouichthys.

<span class="mw-page-title-main">Jaw</span> Opposable articulated structure at the entrance of the mouth

The jaws are a pair of opposable articulated structures at the entrance of the mouth, typically used for grasping and manipulating food. The term jaws is also broadly applied to the whole of the structures constituting the vault of the mouth and serving to open and close it and is part of the body plan of humans and most animals.

<span class="mw-page-title-main">Craniate</span> Clade of chordates, member of the Craniata

A craniate is a member of the Craniata, a proposed clade of chordate animals with a skull of hard bone or cartilage. Living representatives are the Myxini (hagfishes), Hyperoartia, and the much more numerous Gnathostomata. Formerly distinct from vertebrates by excluding hagfish, molecular and anatomical research in the 21st century has led to the reinclusion of hagfish as vertebrates, making living craniates synonymous with living vertebrates.

Pikaia gracilens is an extinct, primitive chordate animal known from the Middle Cambrian Burgess Shale of British Columbia. Described in 1911 by Charles Doolittle Walcott as an annelid, and in 1979 by Harry B. Whittington and Simon Conway Morris as a chordate, it became "the most famous early chordate fossil", or "famously known as the earliest described Cambrian chordate". It is estimated to have lived during the latter period of the Cambrian explosion. Since its initial discovery, more than a hundred specimens have been recovered.

<span class="mw-page-title-main">Ostracoderm</span> Armored jawless fish of the Paleozoic

Ostracoderms are the armored jawless fish of the Paleozoic Era. The term does not often appear in classifications today because it is paraphyletic and thus does not correspond to one evolutionary lineage. However, the term is still used as an informal way of loosely grouping together the armored jawless fishes.

<i>Cathaymyrus</i> Extinct genus of chordates

Cathaymyrus is a genus of Early Cambrian chordate known from the Chengjiang biota in Yunnan Province, China. Both species have a long segmented body with no distinctive head. The segments resemble the v-shaped muscle blocks found in cephalochordates such as Amphioxus. A long linear impression runs along the "back" of the body looking something like a chordate notochord.

<span class="mw-page-title-main">Branchial arch</span> Bony "loops" present in fish, which support the gills

Branchial arches, or gill arches, are a series of paired bony "loops" that support the gills in fish. As gills are the primitive feature of vertebrates, all vertebrate embryos develop pharyngeal arches, though the eventual fate of these arches varies between taxa. In jawed fish, the first arch pair develops into the jaw. The second gill arches develop into the hyomandibular complex, which supports the back of the jaw and the front of the gill series. The remaining posterior arches support the gills. In amphibians and reptiles, many pharyngeal arch elements are lost, including the gill arches, resulting in only the oral jaws and a hyoid apparatus remaining. In mammals and birds, the hyoid is simplified further.

<span class="mw-page-title-main">Deuterostome</span> Superphylum of bilateral animals

Deuterostomes are bilaterian animals of the superphylum Deuterostomia, typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia is further divided into four phyla: Chordata, Echinodermata, Hemichordata, and the extinct Vetulicolia known from Cambrian fossils. The extinct clade Cambroernida is thought to be a member of Deuterostomia.

<span class="mw-page-title-main">Fish jaw</span>

Most bony fishes have two sets of jaws made mainly of bone. The primary oral jaws open and close the mouth, and a second set of pharyngeal jaws are positioned at the back of the throat. The oral jaws are used to capture and manipulate prey by biting and crushing. The pharyngeal jaws, so-called because they are positioned within the pharynx, are used to further process the food and move it from the mouth to the stomach.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<span class="mw-page-title-main">Jean-Bernard Caron</span>

Jean-Bernard Caron is a French and Canadian palaeontologist currently working as a curator of invertebrate palaeontology at the Royal Ontario Museum in Toronto. Caron is also cross-appointed at the University of Toronto as an associate professor in the Departments of Ecology and Evolutionary Biology and Earth Sciences. He is known for his work on the Burgess Shale.

<i>Panderodus</i> A venomous Conodont from the Early Paleozoic

Panderodus Is an extinct genus of jawless fish belonging to the order Conodonta. This genus had a long temporal range, surviving from the middle Ordovician to late Devonian. In 2021, extremely rare body fossils of Panderodus from the Waukesha Biota were described, and it revealed that Panderodus had a more thick body compared to the more slender bodies of more advanced conodonts. It also revealed that this conodont was a macrophagous predator, meaning it went after large prey.

The Cambrian chordates are an extinct group of animals belonging to the phylum Chordata that lived during the Cambrian, between 538 and 485 million years ago. The first Cambrian chordate known is Pikaia gracilens, a lancelet-like animal from the Burgess Shale in British Columbia, Canada. The discoverer, Charles Doolittle Walcott, described it as a kind of worm (annelid) in 1911, but it was later identified as a chordate. Subsequent discoveries of other Cambrian fossils from the Burgess Shale in 1991, and from the Chengjiang biota of China in 1991, which were later found to be of chordates, several Cambrian chordates are known, with some fossils considered as putative chordates.

<i>Nuucichthys</i> Genus of stem-vertebrates

Nuucichthys is an extinct genus of stem-group vertebrates known from the Cambrian Marjum Formation of Utah, United States. The genus contains a single species, N. rhynchocephalus, known from a single individual, representing the first Cambrian vertebrate from the Great Basin region of North America. Nuucichthys provides insights into the diversity of Cambrian vertebrates, which are more rare in Laurentian deposits. Taxonomic studies recover this genus as closely related to other Laurentian stem-vertebrates such as Metaspriggina and Emmonaspis.

References

  1. 1 2 3 4 5 Conway Morris, Simon; Caron, Jean-Bernard (June 11, 2014). "A primitive fish from the Cambrian of North America". Nature . 512 (7515). London: Nature Publishing Group: 419–422. Bibcode:2014Natur.512..419M. doi:10.1038/nature13414. ISSN   0028-0836. PMID   24919146. S2CID   2850050.
  2. Van der Laan, Richard (2016). Family-group names of fossil fishes. doi:10.13140/RG.2.1.2130.1361.
  3. "Part 7- Vertebrates". Collection of genus-group names in a systematic arrangement. Archived from the original on 5 October 2016. Retrieved 30 June 2016.
  4. 1 2 3 Conway Morris, Simon (March 2008). "A Redescription of a Rare Chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada". Journal of Paleontology . 82 (2). Boulder, CO: The Paleontological Society: 424–430. Bibcode:2008JPal...82..424M. doi:10.1666/06-130.1. ISSN   0022-3360. S2CID   85619898.
  5. 1 2 "Metaspriggina walcotti". Burgess Shale Fossil Gallery. Virtual Museum of Canada. 2011. Archived from the original on 2020-11-12.
  6. Smith, M. Paul; Sansom, Ivan J.; Cochrane, Karen D. (2001). "The Cambrian origin of vertebrates". In Ahlberg, Per Erik (ed.). Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development . London; New York: Taylor & Francis. pp.  67–84. ISBN   0-415-23370-4. LCCN   00062919. OCLC   51667292.
  7. 1 2 "GEOL 331 Principles of Paleontology". www.geol.umd.edu. Retrieved 2018-01-06.
  8. Miyashita, Tetsuto; Coates, Michael I.; Farrar, Robert; Larson, Peter; Manning, Phillip L.; Wogelius, Roy A.; et al. (2019). "Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny". Proceedings of the National Academy of Sciences of the United States of America. 116 (6): 2146–2151. Bibcode:2019PNAS..116.2146M. doi: 10.1073/pnas.1814794116 . PMC   6369785 . PMID   30670644.