Names | |
---|---|
Preferred IUPAC name Methylpropanedioic acid | |
Other names Methylmalonic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.007.473 |
EC Number |
|
KEGG | |
MeSH | Methylmalonic+acid |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C4H6O4 | |
Molar mass | 118.088 g/mol |
Density | 1.455 g/cm−3 |
Melting point | 134 °C (273 °F; 407 K) |
Acidity (pKa) | pKa1 = 3,07 [1] pKa2 = 5,76 [1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Methylmalonic acid (MMA) is a chemical compound from the group of dicarboxylic acids. It consists of the basic structure of malonic acid and also carries a methyl group. The salts of methylmalonic acid are called methylmalonates.
Methylmalonic acid is a by-product of the propionate metabolism pathway. [2] The starting sources for this are the following with the respective approximate contributions to whole body propionate metabolism in brackets: [3]
The propionate derivative, propionyl-CoA, is converted into D-methylmalonyl-CoA by propionyl-CoA carboxylase and then converted into L-methylmalonyl-CoA by methylmalonyl-CoA epimerase. [6] Entry into the citric acid cycle occurs through the conversion of L-methylmalonyl-CoA into succinyl-CoA by L-methylmalonyl-CoA mutase, whereby vitamin B12 in the form of adenosylcobalamin is required as a coenzyme. [2] This degradation pathway from propionyl-CoA to succinyl-CoA represents one of the most important anaplerotic pathways of the citric acid cycle. [7] Methylmalonic acid is formed as a by-product of this metabolic pathway when D-methylmalonyl-CoA is cleaved into methylmalonic acid and CoA by D-methylmalonyl-CoA hydrolase. [5] [2] The enzyme acyl-CoA synthetase family member 3 (ACSF3) is in turn responsible for the conversion of methylmalonic acid and CoA to methylmalonyl-CoA. [8]
Intracellular esterases are capable to remove the methyl group (-CH3) from methylmalonic acid and thus generate malonic acid. [9]
Increased methylmalonic acid levels may indicate a vitamin B12 deficiency. The test is highly sensitive (those with vitamin B12 deficiency almost always have raised levels) but not very specific (those that do not have vitamin B12 deficiency may have raised levels too). [10] Methylmalonic acid is elevated in 90–98% of patients with vitamin B12 deficiency. It has lower specificity since 20–25% of patients over the age of 70 have elevated levels of methylmalonic acid, but 25–33% of them do not have B12 deficiency. For this reason, the testing of methylmalonic acid levels is not routinely recommended in the elderly. [11]
An excess is associated with methylmalonic acidemias.
If elevated methylmalonic acid levels are accompanied by elevated malonic acid levels, this may indicate the metabolic disease combined malonic and methylmalonic aciduria (CMAMMA). By calculating the malonic acid to methylmalonic acid ratio in blood plasma, CMAMMA can be distinguished from classic methylmalonic acidemia. [12]
Moreover, methylmalonic acid accumulation in the blood with age has been linked with tumour progression in 2020. [13]
Bacterial overgrowth in the small intestine can also lead to elevated levels of methylmalonic acid due to the competition of bacteria in the absorption process of vitamin B12. [14] [15] This is true of vitamin B12 from food and oral supplementation and can be circumvented by vitamin B12 injections. It is also hypothesized from case studies of patients with short bowel syndrome that intestinal bacterial overgrowth leads to increased production of propionic acid, which is a precursor to methylmalonic acid. [16] It has been shown that in these cases, methylmalonic acid levels returned to normal with the administration of metronidazole. [16] [17]
Methylmalonic acid concentrations in blood are measured by gas chromatographic mass spectrometry or liquid chromatography–mass spectrometry (LC-MS) and the expected values of methylmalonic acid in healthy people are between 73 and 271 nmol/L. [18] [19]
Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.
Propionic acid is a naturally occurring carboxylic acid with chemical formula CH
3CH
2CO
2H. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH
3CH
2CO−
2 as well as the salts and esters of propionic acid are known as propionates or propanoates.
Methylmalonic acidemias, also called methylmalonic acidurias, are a group of inherited metabolic disorders, that prevent the body from properly breaking down proteins and fats. This leads to a buildup of a toxic level of methylmalonic acid in body liquids and tissues. Due to the disturbed branched-chain amino acids (BCAA) metabolism, they are among the classical organic acidemias.
Propionic acidemia, also known as propionic aciduria or propionyl-CoA carboxylase deficiency, is a rare autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
Succinyl-coenzyme A, abbreviated as succinyl-CoA or SucCoA, is a thioester of succinic acid and coenzyme A.
Small intestinal bacterial overgrowth (SIBO), also termed bacterial overgrowth, or small bowel bacterial overgrowth syndrome (SBBOS), is a disorder of excessive bacterial growth in the small intestine. Unlike the colon, which is rich with bacteria, the small bowel usually has fewer than 100,000 organisms per millilitre. Patients with bacterial overgrowth typically develop symptoms which may include nausea, bloating, vomiting, diarrhea, malnutrition, weight loss, and malabsorption by various mechanisms.
Malonyl-CoA is a coenzyme A derivative of malonic acid.
Calcium propanoate or calcium propionate has the formula Ca(C2H5COO)2. It is the calcium salt of propanoic acid.
Malonic aciduria or malonyl-CoA decarboxylase deficiency (MCD) is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-CoA decarboxylase. This enzyme breaks down Malonyl-CoA into acetyl-CoA and carbon dioxide.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.
Methylmalonyl-CoA mutase (EC 5.4.99.2, MCM), mitochondrial, also known as methylmalonyl-CoA isomerase, is a protein that in humans is encoded by the MUT gene. This vitamin B12-dependent enzyme catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA in humans. Mutations in MUT gene may lead to various types of methylmalonic aciduria.
Propionyl-CoA is a coenzyme A derivative of propionic acid. It is composed of a 24 total carbon chain and its production and metabolic fate depend on which organism it is present in. Several different pathways can lead to its production, such as through the catabolism of specific amino acids or the oxidation of odd-chain fatty acids. It later can be broken down by propionyl-CoA carboxylase or through the methylcitrate cycle. In different organisms, however, propionyl-CoA can be sequestered into controlled regions, to alleviate its potential toxicity through accumulation. Genetic deficiencies regarding the production and breakdown of propionyl-CoA also have great clinical and human significance.
Propionyl-CoA carboxylase (EC 6.4.1.3, PCC) catalyses the carboxylation reaction of propionyl-CoA in the mitochondrial matrix. PCC has been classified both as a ligase and a lyase. The enzyme is biotin-dependent. The product of the reaction is (S)-methylmalonyl CoA.
Hydroxocobalamin, also known as vitamin B12a and hydroxycobalamin, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to treat vitamin B12 deficiency including pernicious anemia. Other uses include treatment for cyanide poisoning, Leber's optic atrophy, and toxic amblyopia. It is given by injection into a muscle or vein, by pill or sublingually.
Methylmalonyl-CoA is the thioester consisting of coenzyme A linked to methylmalonic acid. It is an important intermediate in the biosynthesis of succinyl-CoA, which plays an essential role in the tricarboxylic acid cycle.
Methylmalonyl CoA epimerase is an enzyme involved in fatty acid catabolism that is encoded in human by the "MCEE" gene located on chromosome 2. It is routinely and incorrectly labeled as "methylmalonyl-CoA racemase". It is not a racemase because the CoA moiety has 5 other stereocenters.
Cyanocobalamin is a form of vitamin B
12 used to treat and prevent vitamin B
12 deficiency except in the presence of cyanide toxicity. The deficiency may occur in pernicious anemia, following surgical removal of the stomach, with fish tapeworm, or due to bowel cancer. It is used by mouth, by injection into a muscle, or as a nasal spray.
Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial (MMSDH) is an enzyme that in humans is encoded by the ALDH6A1 gene.
Combined malonic and methylmalonic aciduria (CMAMMA), also called combined malonic and methylmalonic acidemia is an inherited metabolic disease characterized by elevated levels of malonic acid and methylmalonic acid. However, the methylmalonic acid levels exceed those of malonic acid. CMAMMA is not only an organic aciduria but also a defect of mitochondrial fatty acid synthesis (mtFASII). Some researchers have hypothesized that CMAMMA might be one of the most common forms of methylmalonic acidemia, and possibly one of the most common inborn errors of metabolism. Due to being infrequently diagnosed, it most often goes undetected.