The Mitsubishi 740, also known as MELPS 740, is a series of 8-bit CMOS microcontrollers and microprocessors with an enhanced MOS Technology 6502 compatible core based on the expanded WDC 65C02. The ICs were manufactured by Mitsubishi Electric during the 1980s and 1990s. [1]
The 740 family was primarily intended for single-chip implementations, and included optional RAM and ROM or EPROM on-die. Other additions included a variety of optional timers, input/output lines, and many other features. It was estimated around 600 variations could be ordered.
In 2002, Mitsubishi and Hitachi merged their chip divisions to form Renesas Technology, and then in 2010 with NEC Electronics to produce Renesas Electronics. The 740 family is now properly known as the Renesas 740.
In 1984, the first 740-series part, M50740, appeared in the 1984 Mitsubishi Single-Chip Microcontroller Databook, [2] and was manufactured by Mitsubishi Electric. Further research is needed to determine the exact date the M50740 was announced.
In 1998, it was reported in EDN magazine, that MELPS 740 family had more than 600 different variations. [3]
In 2002, Mitsubishi Electric and Hitachi agreed to merge their chip operations into a new $7 billion semiconductor company to be called Renesas Technology. The companies said they would both move their respective semiconductor operations to Renesas, including microcomputer, logic, analog, discrete devices, and memory (flash memory, SRAM, etc.) with the exception of DRAMs. [4] Renesas Technology was established on April 1, 2003, as a joint venture of Hitachi (55%) and Mitsubishi Electric (45%).
In 2009, Renesas Technology and NEC Electronics reached a basic agreement to merge, and on April 1, 2010 the two merged into Renesas Electronics.
Though legacy Mitsubishi parts are no longer manufactured, the 740 instruction set is still alive in newer Renesas microcontroller series, such as 38000/740 series and 7200 series.
The Mitsubishi 740 family has a processor core that executes a superset of the 6502 instruction set including many of the extensions added in the 65C02. There is a core set of new instructions common across all 740 family members, plus other instructions that exist in specific parts. [1]
The major change in the 740 family compared to the 65C02 is the addition of a new processor status flag, T, in the formerly unused bit 6. When T is set (to 1), the X register acted as a zero page address for the second operand for instructions using zero page addressing. This allowed the program to select a location in the zero page to act as a sort of second accumulator, setting the X register to point to it, and then removing that address from the instruction format. For instance, in the 6502 an ADC addr
adds the contents of a zero-page memory location at addr to the value in the accumulator. Using T, this can be reduced to a single byte, ADC
. This improves code density and avoids the memory cycle needed to read the address. The value in the T flag is set and cleared using the new SET
and CLT
instructions. [1]
In most members of the 740 family, addresses $0008 through $0039 of the zero page are set aside as the "Special Function Registers", or SFR. These are used to control various add-ons like built-in I/O ports or timers. Some members of the family also include the "Stack Page Selection Bit" (SPSB) within the SFR. When the SPSB is clear (set to 0), the stack is relocated to the zero page instead of its normal location in page one. As most members of the 740 family have the zero page implemented on-die (instead of in external RAM), using the SPSB allows programs to have a working system entirely in a single chip, with appropriate ROMs. Many members of the 740 family include on-die ROM or EPROM as well, allowing for complete single-chip implementations of small programs like device drivers. Since the stack grows downward from the top of the page, $00FF in this case, this requires the upper portion of page to be left otherwise unused to provide space for the stack. [1]
The following is a list of new instructions and existing instructions with new modes in all 740 family parts. [1] Some of these are from the W65C02, and others apply only to the 740 family.
The W65C02 (as opposed to the original 65C02) added several new instructions originally designed by Rockwell Semiconductor. These included instructions to set or clear (which they referred to as "reset", not "clear") single bits in memory, as well as instructions to branch if those bits were set or clear. These were retained in the 740 family.
However, the W65C02 also included the test-and-set/reset instructions, which tested if the bit was set or clear, setting the Z flag appropriately, and then either setting or clearing that bit. These were useful for waiting on certain flags to appear and then resetting them before handling the flag. These instructions were not included in the 740.
Additionally, the original 65C02's STZ
single-instruction STore Zero was not retained, but this functionality was partially replaced by LDM.
The W65C02 also added several new instructions for low-power operation. These may or may not be available on all members of the 740 series.
The following instructions are not available in M50740A, M50740ASP, M50741, M50752, M50757, M50758 parts. [1]
WIT
($C2) - Stops the internal clock until an interrupt is received. Called WAI
in W65C02. Widely used by device drivers, which are generally interrupt driven.The following instructions are not available in M50752, M50757, M50758 parts. [1]
STP
($42) - Stops the internal clock completely until a RESET is received.The following instructions are available in M37450 parts. [1]
MUL
($62) - Multiply 8-bit x 8-bit - Multiplies accumulator with the memory specified by the zero page X addressing mode and stores the high byte of the result on the stack and the low byte in the accumulator.DIV
($E2) - Divide 16-bit / 8-bit - Divides by accumulator the 16-bit data that is the contents of M(zz+x+1) for high byte and the contents of the next address memory for low byte, and stores the quotient in the accumulator and the remainder on the stack as ones' complement.The following instructions are available in M50740A, M50740ASP, M50741, M50752, M50757, M50758 parts. [1]
SLW
($C2) - Releases the connection between the oscillator output and pin Xoutf.FST
($E2) - Connects oscillator output to Xoutf.These parts don't have any internal EEPROM or ROM, thus require an external EEPROM or ROM to hold the firmware. [1]
These parts have pins on the top of the package to allow an EPROM to be plugged into it. These parts are expensive and primarily used during development purposes. [1]
These parts have internal EPROM memory. They are available as either as OTP (one-time programmable) EPROM or Eraseable Window EPROM. [1]
Commercial temperature: [1]
Extended temperature: [1]
The M50734 is a ROM/RAM-less device includes peripherals such as UART, Serial I/O, A/D, Watchdog timer, VCU, 32 parallel I/O ports. A choice of 8 and 16-bit timers to manage real time tasks. Its instruction set is a superset of the 6502 microprocessor. [1]
Incorporated into this particular IC are the following: [1]
The M50734SP/FP and the M50734SP/FP-10 are unique CMOS LSI microprocessor with UART, clocked serial I/O, analog-to-digital converter, VCU, watchdog timer and 32-bit parallel I/O arranged around the M5040 CPU core. Since the M50734 has multiple internal timers for real-time control, it is ideal for controlling office automation equipment such as printers, typewriters, plotters, copy machines, FAX and handy word processors. Use of the CMOS process enables low power consumption, making the M50734SP also suitable for applications where battery-powered operation is required.
The difference between the M50734SP and the M50734FP, or between the M50734SP-10 and the M50734FP-10 lies only in the package. The difference between the M50734SP/FP and the M50734SP/FP-10 lies only in the maximum clock frequency.
In the 1990s a clone of the M50959 was manufactured in Russia with the designation KF1869VE1 (Russian : КФ1869ВЕ1). [5]
The MOS Technology 6502 is an 8-bit microprocessor that was designed by a small team led by Chuck Peddle for MOS Technology. The design team had formerly worked at Motorola on the Motorola 6800 project; the 6502 is essentially a simplified, less expensive and faster version of that design.
The 68HC11 is an 8-bit microcontroller family introduced by Motorola Semiconductor in 1984. It descended from the Motorola 6800 microprocessor by way of the 6801. The 68HC11 devices are more powerful and more expensive than the 68HC08 microcontrollers and are used in automotive applications, barcode readers, hotel card key writers, amateur robotics, and various other embedded systems. The MC68HC11A8 was the first microcontroller to include CMOS EEPROM.
A microcontroller or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.
The Intel MCS-51 is a single chip microcontroller (MCU) series developed by Intel in 1980 for use in embedded systems. The architect of the Intel MCS-51 instruction set was John H. Wharton. Intel's original versions were popular in the 1980s and early 1990s, and enhanced binary compatible derivatives remain popular today. It is a complex instruction set computer with separate memory spaces for program instructions and data.
The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is the last 8-bit microprocessor developed by Intel.
PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.
The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 was designed for low power consumption, embedded applications and low cost.
National Semiconductor's SC/MP for Simple Cost-effective Micro Processor, is an early 8-bit microprocessor which became available in April 1976. It was designed to allow systems to be implemented with the minimum number of additional support chips. SC/MP included a daisy-chained control pin that allowed up to three SC/MP's share a single main memory to produce a multiprocessor system, or to act as controllers in a system with another main central processing unit (CPU). Three versions were released over its lifetime, SCMP-1 through 3, the latter two also known as INS8060 and INS8070.
The Western Design Center (WDC) 65C02 microprocessor is an enhanced CMOS version of the popular nMOS-based 8-bit MOS Technology 6502. It uses less power than the original 6502, fixes several problems, and adds new instructions. The power usage is on the order of 10 to 20 times less than the original 6502 running at the same speed; its reduced power consumption has made it useful in portable computer roles and industrial microcontroller systems. The 65C02 has also been used in some home computers, as well as in embedded applications, including medical-grade implanted devices.
The Western Design Center (WDC) W65C265S is a 16-bit CMOS microcontroller based on a W65C816S processor core, which is a superset of the MOS Technology 6502 processor.
The CSG 65CE02 is an 8/16-bit microprocessor developed by Commodore Semiconductor Group in 1988. It is a member of the MOS Technology 6502 family, developed from the CMOS WDC 65C02 released by the Western Design Center in 1983.
TLCS is a prefix applied to microcontrollers made by Toshiba. The product line includes multiple families of CISC and RISC architectures. Individual components generally have a part number beginning with "TMP". E.g. the TMP8048AP is a member of the TLCS-48 family.
The ST6 and ST7 are 8-bit microcontroller product lines from STMicroelectronics. They are commonly used in small embedded applications like washing machines.
The W65C816S is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1983, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.
RL78 Family is a 16-bit CPU core for embedded microcontrollers of Renesas Electronics introduced in 2010.
The PIC instruction set refers to the set of instructions that Microchip Technology PIC or dsPIC microcontroller supports. The instructions are usually programmed into the Flash memory of the processor, and automatically executed by the microcontroller on startup.
78K is the trademark name of 16- and 8-bit microcontroller family manufactured by Renesas Electronics, originally developed by NEC started in 1986. The basis of 78K Family is an accumulator-based register-bank CISC architecture. 78K is a single-chip microcontroller, which usually integrates; program ROM, data RAM, serial interfaces, timers, I/O ports, an A/D converter, an interrupt controller, and a CPU core, on one die.
The Mostek MK5065 was an 8-bit microprocessor introduced by Mostek in early 1974. The design was originally developed by Motorola for use in an Olivetti electronic calculator, and was licensed to Mostek for use in non-calculator roles. It featured three sets of processor registers, allowing it to switch to an interrupt handler in a single cycle, and a wait-for-data mode that aided direct memory access.
The COP400 or COP II is a 4-bit microcontroller family introduced in 1977 by National Semiconductor as a follow-on product to their original PMOS COP microcontroller. COP400 family members are complete microcomputers containing internal timing, logic, ROM, RAM, and I/O necessary to implement dedicated controllers. Some COP400 devices were second-sourced by Western Digital as the WD4200 family. In the Soviet Union several COP400 microcontrollers were manufactured as the 1820 series.