Mollweide's formula

Last updated
Figure 1 - A triangle. The angles a, b, and g are respectively opposite the sides a, b, and c. Triangle with notations 2.svg
Figure 1 – A triangle. The angles α, β, and γ are respectively opposite the sides a, b, and c.

In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2]

Contents

A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel  [ de ] in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors. [3]

It can be used to check the consistency of solutions of triangles. [4]

Let and be the lengths of the three sides of a triangle. Let and be the measures of the angles opposite those three sides respectively. Mollweide's formulas are

Relation to other trigonometric identities

Because in a planar triangle these identities can alternately be written in a form in which they are more clearly a limiting case of Napier's analogies for spherical triangles (this was the form used by Von Oppel),

Dividing one by the other to eliminate results in the law of tangents,

In terms of half-angle tangents alone, Mollweide's formula can be written as

or equivalently

Multiplying the respective sides of these identities gives one half-angle tangent in terms of the three sides,

which becomes the law of cotangents after taking the square root,

where is the semiperimeter.

The identities can also be proven equivalent to the law of sines and law of cosines.

Dual relations

In spherical trigonometry, the law of cosines and derived identities such as Napier's analogies have precise duals swapping central angles measuring the sides and dihedral angles at the vertices. In the infinitesimal limit, the law of cosines for sides reduces to the planar law of cosines and two of Napier's analogies reduce to Mollweide's formulas above. But the law of cosines for angles degenerates to By dividing squared side length by the spherical excess we obtain a non-vanishing ratio, the spherical trigonometry relation:

In the infinitesimal limit, as the half-angle tangents of spherical sides reduce to lengths of planar sides, the half-angle tangent of spherical excess reduces to twice the area of a planar triangle, so on the plane this is:

and likewise for and

As corollaries (multiplying or dividing the above formula in terms of and ) we obtain two dual statements to Mollweide's formulas. The first expresses the area in terms of two sides and the included angle, and the other is the law of sines:

We can alternately express the second formula in a form closer to one of Mollweide's formulas (again the law of tangents):

Cyclic quadrilateral

Any cyclic quadrilateral satisfies a generalization of Mollweide's formula. Cyclic quadrilateral with the angle between diagonals.png
Any cyclic quadrilateral satisfies a generalization of Mollweide's formula.

A generalization of Mollweide's formula holds for a cyclic quadrilateral Denote the lengths of sides and and angle measures and If is the point of intersection of the diagonals, denote Then: [5]

Several variant formulas can be constructed by substituting based on the cyclic quadrilateral identities,

As rational relationships in terms of half-angle tangents of two adjacent angles, these formulas can be written:

A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as approaches zero, a cyclic quadrilateral converges into a triangle and the formulas above simplify to the analogous triangle formulas. Relabeling to match the convention for triangles, in the limit and

Related Research Articles

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths Letting be the semiperimeter of the triangle, the area is

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Law of tangents</span> Relates tangents of two angles of a triangle and the lengths of the opposing sides

In trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

<span class="mw-page-title-main">Duffing equation</span> Non-linear second order differential equation and its attractor

The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.

<span class="mw-page-title-main">Bretschneider's formula</span> Formula for the area of a quadrilateral

In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

Morrie's law is a special trigonometric identity. Its name is due to the physicist Richard Feynman, who used to refer to the identity under that name. Feynman picked that name because he learned it during his childhood from a boy with the name Morrie Jacobs and afterwards remembered it for all of his life.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

<span class="mw-page-title-main">Hansen's problem</span> Fundamental topographical problem

In trigonometry, Hansen's problem is a problem in planar surveying, named after the astronomer Peter Andreas Hansen (1795–1874), who worked on the geodetic survey of Denmark. There are two known points A, B, and two unknown points P1, P2. From P1 and P2 an observer measures the angles made by the lines of sight to each of the other three points. The problem is to find the positions of P1 and P2. See figure; the angles measured are (α1, β1, α2, β2).

<span class="mw-page-title-main">Law of cotangents</span> Trigonometric identity relating the sides and angles of a triangle

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

<i>Pentagramma mirificum</i>

Pentagramma mirificum is a star polygon on a sphere, composed of five great circle arcs, all of whose internal angles are right angles. This shape was described by John Napier in his 1614 book Mirifici Logarithmorum Canonis Descriptio along with rules that link the values of trigonometric functions of five parts of a right spherical triangle. The properties of pentagramma mirificum were studied, among others, by Carl Friedrich Gauss.

References

  1. Wilczynski, Ernest Julius (1914), Plane Trigonometry and Applications, Allyn and Bacon, p. 102
  2. Sullivan, Michael (1988), Trigonometry, Dellen, p. 243
  3. Bradley, H. C.; Yamanouti, T.; Lovitt, W. V.; Archibald, R. C. (1921), "Discussions: Geometric Proofs of the Law of Tangents", American Mathematical Monthly, 28 (11–12): 440–443
  4. Ernest Julius Wilczynski, Plane Trigonometry and Applications, Allyn and Bacon, 1914, page 105
  5. José García, Emmanuel Antonio (2022), "A generalization of Mollweide's formula (rather Newton's)" (PDF), Matinf, 5 (9–10): 19–22, retrieved 29 December 2023

Further reading