Monascus

Last updated

Monascus
Red rice wine hong zhao.JPG
Monascus purpureus being used to make red rice wine
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Monascus
Tiegh. (1884)
Type species
Monascus ruber
Synonyms
  • Allescheria Sacc. & P.Syd. (1899)
  • BackusiaThirum., M.D.Whitehead & P.N.Mathur (1965)
  • EurotiellaLindau (1900)
  • EurotiopsisCostantin ex Laborde (1897)
  • PhysomycesHarz (1890)

Monascus is a genus of mold. Among the known species of this genus, the red-pigmented Monascus purpureus is among the most important because of its use in the production of certain fermented foods in East Asia, particularly China and Japan. It has also been found associated with the nests of some bee species, particularly bumblebees and sweat bees though its function in these environments is unclear [1] [2] .

Contents

Species

Phylogeny

Phylogeny as given by Bisby et al., 2000, who put the genus into a separate family Monascaceae. [3]

Monascaceae
Monascus

Monascus kaoliang

Monascus pilosus

Monascus aurantiacus

Monascus floridanus

Monascus eremophilus

Monascus ruber

Monascus purpureus

Monascus argentinensis

Basipetospora

Xeromyces

Fraseriella

Monascus pigments and biosynthesis

Monascus purpureus derives its signature red color from mosascus pigment that is composed of azaphilones or secondary fungal metabolites. [4] There are six primary compounds all with similar biosynthetic pathways, two yellow pigments, ankaflavin and monascin, two orange pigments monascorubin and rubropunctain, and two red pigments monascorubinamine and rubropunctaimine. [5] All six are produced with a combination of polyketide synthase (PKS) and fatty acid synthase (FAS) In the first step a hexekatide is formed through Type 1 PKS encoded by the Mripig A gene. [6] PKS uses the domains acyl transferase, acetyl-CoA, ketoacyl synthase, acyl transferase, acyl carrier protein and the base units of acetyl-CoA and malonyl-CoA to produce a ketone chain that undergoes Knoevenagel aldol condensations. [6] The second step is the formation of a fatty acid through the FAS pathway. [5] The β-keto acid then undergoes a trans-esterification reaction to form one of the two orange pigments. At this point the compound can either undergo reduction to form one of the yellow pigments or amination to form one of the red pigments. [4]

Related Research Articles

<span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

Juvenile hormones (JHs) are a group of acyclic sesquiterpenoids that regulate many aspects of insect physiology. The first discovery of a JH was by Vincent Wigglesworth. JHs regulate development, reproduction, diapause, and polyphenisms.

<span class="mw-page-title-main">Lovastatin</span> Chemical compound

Lovastatin, sold under the brand name Mevacor among others, is a statin medication, to treat high blood cholesterol and reduce the risk of cardiovascular disease. Its use is recommended together with lifestyle changes. It is taken by mouth.

<span class="mw-page-title-main">Teicoplanin</span> Pharmaceutical drug

Teicoplanin is an semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall peptidoglycan synthesis. It is used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis.

<span class="mw-page-title-main">Plasmalogen</span> Subclass of Glycerophospholipids

Plasmalogens are a class of glycerophospholipid with a plasmenyl group linked to a lipid at the sn-1 position of the glycerol backbone. Plasmalogens are found in multiple domains of life, including mammals, invertebrates, protozoa, and anaerobic bacteria. They are commonly found in cell membranes in the nervous, immune, and cardiovascular systems. In humans, lower levels of plasmalogens are studied in relation to some diseases. Plasmalogens are also associated with adaptations to extreme environments in non-human organisms.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the FASN gene.

<span class="mw-page-title-main">ACAT1</span> Protein-coding gene in the species Homo sapiens

Acetyl-CoA acetyltransferase, mitochondrial, also known as acetoacetyl-CoA thiolase, is an enzyme that in humans is encoded by the ACAT1 gene.

<span class="mw-page-title-main">MT-ATP8</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP8 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 8' that encodes a subunit of mitochondrial ATP synthase, ATP synthase Fo subunit 8. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Subunit 8 differs in sequence between Metazoa, plants and Fungi.

In enzymology, an aminoacylase (EC 3.5.1.14) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase III</span> Enzyme

In enzymology, a β-ketoacyl-[acyl-carrier-protein] synthase III (EC 2.3.1.180) is an enzyme that catalyzes the chemical reaction

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucosamine-phosphate N-acetyltransferase</span>

In enzymology, glucosamine-phosphate N-acetyltransferase (GNA) is an enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to the primary amine in glucosamide-6-phosphate, generating a free CoA and N-acetyl-D-glucosamine-6-phosphate.

<span class="mw-page-title-main">ADAMTSL4</span> Protein-coding gene in the species Homo sapiens

ADAMTS-like protein 4 is a protein that in humans is encoded by the ADAMTSL4 gene.

<span class="mw-page-title-main">ACY1</span> Protein-coding gene in the species Homo sapiens

Aminoacylase-1 is an enzyme that in humans is encoded by the ACY1 gene.

<span class="mw-page-title-main">Huang Bai</span> Herb in Chinese medicine

Huáng bǎi, huáng bó or huáng bò is one of the fifty fundamental herbs of traditional Chinese medicine. Known also as Cortex Phellodendri, it is the bark of one of two species of Phellodendron tree: Phellodendron amurense or Phellodendron chinense.

<span class="mw-page-title-main">Magnaporthales</span> Order of fungi

The Magnaporthales are an order of fungi within the class Sordariomycetes and subclass Diaporthomycetidae. It has several water based species and genera.

<span class="mw-page-title-main">C-1027</span> Chemical compound

C-1027 or lidamycin is an antitumor antibiotic consisting of a complex of an enediyne chromophore and an apoprotein. It shows antibiotic activity against most Gram-positive bacteria. It is one of the most potent cytotoxic molecules known, due to its induction of a higher ratio of DNA double-strand breaks than single-strand breaks.

References

  1. Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia (2 November 2015). "A Brazilian Social Bee Must Cultivate Fungus to Survive". Current Biology. 25 (21): 2851–2855. Bibcode:2015CBio...25.2851M. doi:10.1016/j.cub.2015.09.028. PMID   26592344.
  2. Chow, Lui Julie; Nesbit, Miles L.; Hill, Tom; Tranter, Christopher; Evison, Sophie E.F.; Hughes, William O.H.; Graystock, Peter (30 January 2024). "Identification of fungi isolated from commercial bumblebee colonies". PeerJ. 12: e16713. doi: 10.7717/peerj.16713 . PMC   10836204 . PMID   38313023.
  3. "Catalogue of Life – 2011 Annual Checklist :: Search all names". www.catalogueoflife.org. Retrieved 23 October 2017.
  4. 1 2 Agboyibor, Clement; Kong, Wei-Bao; Chen, Dong; Zhang, Ai-Mei; Niu, Shi-Quan (1 October 2018). "Monascus pigments production, composition, bioactivity and its application: A review". Biocatalysis and Agricultural Biotechnology. 16: 433–447. doi:10.1016/j.bcab.2018.09.012. ISSN   1878-8181. S2CID   139258585.
  5. 1 2 Chaudhary, Vishu; Katyal, Priya; Poonia, Anuj Kumar; Kaur, Jaspreet; Puniya, Anil Kumar; Panwar, Harsh (4 October 2021). "Natural pigment from Monascus : The production and therapeutic significance". Journal of Applied Microbiology. 133 (1): 18–38. doi: 10.1111/jam.15308 . ISSN   1364-5072. PMID   34569683. S2CID   237941521.
  6. 1 2 Liu, Lujie; Zhao, Jixing; Huang, Yaolin; Xin, Qiao; Wang, Zhilong (2018). "Diversifying of Chemical Structure of Native Monascus Pigments". Frontiers in Microbiology. 9: 3143. doi: 10.3389/fmicb.2018.03143 . ISSN   1664-302X. PMC   6308397 . PMID   30622522.