Mycothiol-dependent formaldehyde dehydrogenase

Last updated
mycothiol-dependent formaldehyde dehydrogenase
Identifiers
EC no. 1.1.1.306
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a mycothiol-dependent formaldehyde dehydrogenase (EC 1.1.1.306) is an enzyme that catalyzes the chemical reaction

formaldehyde + mycothiol + NAD+ S-formylmycothiol + NADH + 2 H+

The 3 substrates of this enzyme are formaldehyde, mycothiol, and NAD+, whereas its 3 products are S-formylmycothiol, NADH, and H+. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is formaldehyde:NAD+ oxidoreductase (mycothiol-formylating). This enzyme is also called NAD/factor-dependent formaldehyde dehydrogenase or S-(hydroxymethyl)mycothiol dehydrogenase.

Related Research Articles

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

<span class="mw-page-title-main">Formate dehydrogenase</span>

Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase (EC 1.17.1.9) or to a cytochrome in formate:ferricytochrome-b1 oxidoreductase (EC 1.2.2.1). This family of enzymes has attracted attention as inspiration or guidance on methods for the carbon dioxide fixation, relevant to global warming.

<span class="mw-page-title-main">D-xylulose reductase</span>

In enzymology, a D-xylulose reductase (EC 1.1.1.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">(R,R)-butanediol dehydrogenase</span> Class of enzymes

In enzymology, a (R,R)-butanediol dehydrogenase (EC 1.1.1.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glycerate dehydrogenase</span>

In enzymology, a glycerate dehydrogenase (EC 1.1.1.29) is an enzyme that catalyzes the chemical reaction

Glycerol-3-phosphate dehydrogenase (NAD<sup>+</sup>)

In enzymology, a glycerol-3-phosphate dehydrogenase (NAD+) (EC 1.1.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a hydroxypyruvate reductase (EC 1.1.1.81) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methanol dehydrogenase</span>

In enzymology, a methanol dehydrogenase (MDH) is an enzyme that catalyzes the chemical reaction:

In enzymology, a S-(hydroxymethyl)glutathione dehydrogenase (EC 1.1.1.284) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1,3-propanediol dehydrogenase (EC 1.1.1.202) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-hydroxyacyl-CoA dehydrogenase</span> Enzyme

In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction

In enzymology, an orotate reductase (NADH) (EC 1.3.1.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a ferric-chelate reductase (EC 1.16.1.7) is an enzyme that catalyzes the chemical reaction

In enzymology, an FMN reductase (EC 1.5.1.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

Diacetyl reductase ((R)-acetoin forming) (EC 1.1.1.303, (R)-acetoin dehydrogenase) is an enzyme with systematic name (R)-acetoin:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Diacetyl reductase ((S)-acetoin forming)</span>

Diacetyl reductase ((S)-acetoin forming) (EC 1.1.1.304, (S)-acetoin dehydrogenase) is an enzyme with systematic name (S)-acetoin:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

Alcohol dehydrogenase (nicotinoprotein) (EC 1.1.99.36, NDMA-dependent alcohol dehydrogenase, nicotinoprotein alcohol dehydrogenase, np-ADH, ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase) is an enzyme with systematic name ethanol:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction

Methanol dehydrogenase (nicotinoprotein) (EC 1.1.99.37, NDMA-dependent methanol dehydrogenase, nicotinoprotein methanol dehydrogenase, methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase) is an enzyme with systematic name methanol:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

References

  1. Misset-Smits M, van Ophem PW, Sakuda S, Duine JA (June 1997). "Mycothiol, 1-O-(2'-[N-acetyl-L-cysteinyl]amido-2'-deoxy-alpha-D-glucopyranosyl)-D- myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase". FEBS Letters. 409 (2): 221–2. doi: 10.1016/S0014-5793(97)00510-3 . PMID   9202149.
  2. Norin A, Van Ophem PW, Piersma SR, Persson B, Duine JA, Jörnvall H (September 1997). "Mycothiol-dependent formaldehyde dehydrogenase, a prokaryotic medium-chain dehydrogenase/reductase, phylogenetically links different eukaroytic alcohol dehydrogenases--primary structure, conformational modelling and functional correlations". European Journal of Biochemistry. 248 (2): 282–9. doi: 10.1111/j.1432-1033.1997.00282.x . PMID   9346279.
  3. Vogt RN, Steenkamp DJ, Zheng R, Blanchard JS (September 2003). "The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase". The Biochemical Journal. 374 (Pt 3): 657–66. doi:10.1042/BJ20030642. PMC   1223637 . PMID   12809551.
  4. Rawat M, Av-Gay Y (April 2007). "Mycothiol-dependent proteins in actinomycetes". FEMS Microbiology Reviews. 31 (3): 278–92. doi: 10.1111/j.1574-6976.2006.00062.x . PMID   17286835.