Necrobiome

Last updated

The necrobiome has been defined as the community of species associated with decaying remains after the death of an organism. [1] The process of decomposition is complex. Microbes decompose cadavers, but other organisms including fungi, nematodes, insects, and larger scavenger animals also contribute. [2] Once the immune system is no longer active, microbes colonizing the intestines and lungs decompose their respective tissues and then travel throughout the body via the circulatory and lymphatic systems to break down other tissue and bone. [3] During this process, gases are released as a by-product and accumulate, causing bloating. [4] Eventually, the gases seep through the body's wounds and natural openings, providing a way for some microbes to exit from the inside of the cadaver and inhabit the outside. [3] The microbial communities colonizing the internal organs of a cadaver are referred to as the thanatomicrobiome. [5] The region outside of the cadaver that is exposed to the external environment is referred to as the epinecrotic microbial communities of the necrobiome, [6] [7] [5] and is especially important when determining the time and location of death for an individual. [6] Different microbes play specific roles during each stage of the decomposition process. The microbes that colonize the cadaver and the rate of their activity are determined by the cadaver itself and the cadaver's surrounding environmental conditions. [7]

Contents

History

There is textual evidence that human cadavers were first studied around the third century BC to gain an understanding of human anatomy. [8] Many of the first human cadaver studies took place in Italy, where the earliest record of determining the cause of death from a human corpse dates back to 1286. [8] However, understanding of the human body progressed slowly, in part because the spread of Christianity and other religious beliefs resulted in human dissection becoming illegal. [8]

Non-human animals only were dissected for anatomical understanding until the 13th century when officials realized human cadavers were necessary for a better understanding of the human body. [8] It was not until 1676 that Antonie van Leeuwenhoek designed a lens that made it possible to visualize microbes, [9] and not until the late 18th century when microbes were considered useful in understanding the body after death. [10]

Necrobiome on pig cadaver Necrobiome on a pig cadaver.png
Necrobiome on pig cadaver

In modern times, human cadavers are used for research, but other animal models can provide larger sample sizes and produce more controlled studies. [11] [12] Microbial colonization between humans and some non-human animals is so similar that those models can be used to understand the decomposition process for humans. [13] Swine have been used repeatedly to understand the human decomposition process in terrestrial environments. [14] [15] Pigs are suitable for studying human decomposition because of their size, sparse hairs, and similar bacteria found in their GI tracts. [16] Pig carcasses also minimizing the issue of variation that exists when using human cadavers as study subjects. [17]

Sophisticed molecular techniques have made it possible to identify the microbial communities that inhabit and decompose cadavers; however, this research is fairly new. [5] Studying the necrobiome has become increasingly useful in determining the time and cause of death, [7] [5] which is useful in crime scene investigations. [18]

Applications in Forensics

Microbial forensics

As the necrobiome deals with the various communities of bacteria and other organisms that catalyze the decomposition of plants and animals, this particular biome is an increasingly vital part of forensic science. The microbes occupying the space underneath and around a decomposing body are unique to it—similar to how fingerprints are exclusively unique to only one person. [19] Using this differentiation, forensic investigators at a crime scene are able to distinguish between burial sites, as well as gain concrete factual information about how long the body has been there and the predicted area in which the death possibly occurred. [20]

Forensic microbiologists investigate ways to determine time and place of death by analyzing the microbes present on the corpse. [21] The microbial timeline of how a body decays is known as the microbial clock. It estimates how long a body has been in a certain place based on microbes present or missing. [22] The succession of bacterial species populating the body after a period of four days is an indicator of minimum time since death. [23] Recent studies have taken place to determine if bacteria alone can inform the post-mortem interval. [11] Bacteria responsible for decomposing cadavers can be difficult to study because the bacteria found on a cadaver vary and change quickly. [24] [11] Bacteria can be brought to a cadaver by scavengers, air, or water. [25] Other environmental factors like temperature and soil can impact the microbes found on a cadaver. [25]

The time of death can be estimated not only by the type and amount of bacteria on a cadaver, but also by the chemical compounds produced by those bacteria. Forensic anthropologist Arpad Vass determined, from reseach he undertook in the 1990s, that three types of fatty acids, produced when bacteria break down fat tissues, muscles, and food remnants in the stomach are useful in predicting the time since death during forensic investigations. [26]

Forensic entomology

Forensic entomology, the study of insects (arthropods) found in decomposing humans, is useful in determining the post-mortem interval after 3-4 days have passed since the death. [27] Various types of flies are usually drawn to a cadaver and typically lay their eggs there. [26] Therefore, both the developmental stages of one species of fly and the succession of different species can give an estimate of how long the person has been deceased. Since the presence and life cycle of insects varies by temperature and environmental conditions, this type of analysis cannot give the actual time of death, but results only in a minimum time since death. The deceased could not have been dead longer than the oldest maggot found. [27]

Insect activity can also indicate the cause of death. Blowflies typically lay their eggs in natural body cavities that are easily assessible, yet also sheltered. If the pattern of maggot activity appears elsewhere, that could indicate an injury, such as a stab wound, even if the surrounding tissue has decomposed. In the event of a death caused by poison, traces of the toxin may have been consumed by the maggots, without harming them. [27]

Since insect species tend to have certain geographic ranges and known habitat preferences, forensic entomologists can determine if a body has been moved after death. Analysis of the insects in the necrobiome can indicate if the death occured in a different ecological or geographical environment than where the cadaver was found. [27]

Research

Human Cadavers

The decomposition of human bodies is studied at reseach facilities known as body farms. Seven educational institution house such facilities in the United States: University of Tennessee in Knoxville, Western Carolina University, Texas State University, Sam Houston State University, Southern Illinois University, Colorado Mesa University, and University of South Florida. These facilities study the decomposition of cadavers in all possible manners of decay, including in open or frozen environments, buried underground, or within cars. [28] Through the study of the cadavers, experts examine the microbial timeline and document what is typical in each stage in the various locations that each body is placed. [28]

In 2013, at the Southeast Texas Applied Forensics Science facility at Sam Houston State University, researchers documented the bacteria growing in two decomposing cadavers placed in a natural outdoor environment. Their focus was on the bloat stage, when hydrogen sulfide and methane produced by bacteria build up and inflate the cadaver. They found that "by the end of the bloat period...anaerobic bacteria such as Clostridia had become dominant" and swaps of the oral cavity "showed a shift toward Firmicutes, a group of bacteria that includes Clostridia." [26]

By 2019, Jennifer Pechal, a forensic science researcher at Michigan State University, had worked with microbes on almost 2,000 human remains in a spectrum of conditions. She proposed a pattern in the necrobiome that concurs with data from scientists in Italy, Austria, and France. They found that a "large, consistent shift in the microbial community" occurs about 48 hours after death, making it "fairly easy to tell if a body has been dead for more or less than 2 days." Pechal also hopes that microbial tests can be used in the future to help pathologists determine undiagnosed medical conditions that were the cause of death. [26]

Non-Human Remains

A 2019 study at the University of Huddersfield in West Yorkshire, United Kingdom sought to investigate the influence fur has on the necrobiome of rabbits. The experiment involved six dead rabbits purchased from the pet food company, Kiezebrink. The fur was removed from the torsos of three of the test subjects. All six samples were placed on "sterile sand in clean plastic containers." [29] Lids covering the containers prevented birds and other scavengers from accessing the carcasses, while small holes drilled into the sides of the containers allowed air flow and insect activity while the containers were exposed on the roof of a university building. Samples were collected from inside of the mouth, the upper skin of the torso exposed to the air environment, and the bottom skin of the torso in contact with the sand. Proteobacteria were the most abundant present, followed by Firmicutes, Bacteroidetes, and Actinobacteria during the active stage of decomposition. During the advanced stage of decomposition, Proteobacteria decreased from 99.4% to 81.6% in the oral cavity but were most abundant in the non-fur samples. Firmicutes were the most abundant for the skin samples in both fur and non-fur samples. Finally, Proteobacteria was most abundant in the soil interface during the beginning of decomposition in both fur and non-fur samples. The researchers also noted that Actinobacteria was the least abundant in the active stage and decreased even more during the dry stage. The conclusion of the experiment was that while bacterial communities changed over the course of decomposition, the most significant variation is attributed to different anatomical regions "but independently of the presence of the fur." [29]

Technology and techniques

Techniques for analyzing the necrobiome involve phospholipid fatty acid (PLFA) analysis, [17] total soil fatty acid methyl esters, [17] and DNA profiling. [17] This technology is used to simplify the sample collection into sequences that scientists can read. The simplified sequence of the necrobiome is run through a data bank to match the name of it. Due to the lack of universal algorithm technology, there is a knowledge gap in various platforms across different regions of the world. In order to close that gap, there needs to be an expansion of the technology. However, there are a few obstacles, including identifying needs, research, prototype development, acceptance, and adoption. [30]

Researchers are working on an algorithm to predict time since death with an accuracy of within two days, which would be an improvement over time frames given by forensic entomology. [31] Jennifer Pechal states that those computer models must "be tested on bodies with a known time of death to ensure they are accurate." As of 2020, that technology is still 5 to 10 years away from becoming available. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is a field of forensic science that uses insects found on corpses to help solve criminal cases. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insect's introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. Forensic entomology can also provide clues about possible movement of the body after death, and the presence of antemortem trauma. The identification of postmortem interval (PMI) to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, and has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Insect assemblages present on a body can be used to approximate a primary location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Decomposition</span> Process in which organic substances are broken down into simpler organic matter

Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as earthworms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

Putrefaction is the fifth stage of death, following pallor mortis, livor mortis, algor mortis, and rigor mortis. This process references the breaking down of a body of an animal post-mortem. In broad terms, it can be viewed as the decomposition of proteins, and the eventual breakdown of the cohesiveness between tissues, and the liquefaction of most organs. This is caused by the decomposition of organic matter by bacterial or fungal digestion, which causes the release of gases that infiltrate the body's tissues, and leads to the deterioration of the tissues and organs. The approximate time it takes putrefaction to occur is dependent on various factors. Internal factors that affect the rate of putrefaction include the age at which death has occurred, the overall structure and condition of the body, the cause of death, and external injuries arising before or after death. External factors include environmental temperature, moisture and air exposure, clothing, burial factors, and light exposure. Body farms are facilities that study the way various factors affect the putrefaction process.

Coffin birth, also known as postmortem fetal extrusion, is the expulsion of a nonviable fetus through the vaginal opening of the decomposing body of a deceased pregnant woman due to increasing pressure from intra-abdominal gases. This kind of postmortem delivery occurs very rarely during the decomposition of a body. The practice of chemical preservation, whereby chemical preservatives and disinfectant solutions are pumped into a body to replace natural body fluids, have made the occurrence of "coffin birth" so rare that the topic is rarely mentioned in international medical discourse.

<span class="mw-page-title-main">Post-mortem interval</span> Time that has elapsed since a person has died

The post-mortem interval (PMI) is the time that has elapsed since an individual's death. When the time of death is not known, the interval may be estimated, and so an approximate time of death established. Postmortem interval estimations can range from hours, to days or even years depending on the type of evidence present. There are standard medical and scientific techniques supporting such an estimation.

<span class="mw-page-title-main">Microbial ecology</span> Study of the relationship of microorganisms with their environment

Microbial ecology is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.

<span class="mw-page-title-main">Forensic biology</span> Forensic application of the study of biology

Forensic biology is the application of biological principles and techniques in the investigation of criminal and civil cases.

Forensic entomological decomposition is how insects decompose and what that means for timing and information in criminal investigations. Medicolegal entomology is a branch of forensic entomology that applies the study of insects to criminal investigations, and is commonly used in death investigations for estimating the post-mortem interval (PMI). One method of obtaining this estimate uses the time and pattern of arthropod colonization. This method will provide an estimation of the period of insect activity, which may or may not correlate exactly with the time of death. While insect successional data may not provide as accurate an estimate during the early stages of decomposition as developmental data, it is applicable for later decompositional stages and can be accurate for periods up to a few years.

Arpad Alexander Vass is a forensic anthropologist. He formerly taught at the Law Enforcement Innovation Center, which is part of the University of Tennessee's Institute for Public Service.

<span class="mw-page-title-main">Microbiota</span> Community of microorganisms

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

Oral ecology is the microbial ecology of the microorganisms found in mouths. Oral ecology, like all forms of ecology, involves the study of the living things found in oral cavities as well as their interactions with each other and with their environment. Oral ecology is frequently investigated from the perspective of oral disease prevention, often focusing on conditions such as dental caries, candidiasis ("thrush"), gingivitis, periodontal disease, and others. However, many of the interactions between the microbiota and oral environment protect from disease and support a healthy oral cavity. Interactions between microbes and their environment can result in the stabilization or destabilization of the oral microbiome, with destabilization believed to result in disease states. Destabilization of the microbiome can be influenced by several factors, including diet changes, drugs or immune system disorders.

<span class="mw-page-title-main">Microbiology of decomposition</span>

Microbiology of decomposition is the study of all microorganisms involved in decomposition, the chemical and physical processes during which organic matter is broken down and reduced to its original elements.

<span class="mw-page-title-main">Carrion insects</span> Insects associated with decomposing remains

Carrion insects are insects associated with decomposing remains. The processes of decomposition begin within a few minutes of death. Decomposing remains offer a temporary, changing site of concentrated resources which are exploited by a wide range of organisms, of which arthropods are often the first to arrive and the predominant exploitive group. However, not all arthropods found on or near decomposing remains will have an active role in the decay process.

Decomposition in animals is a process that begins immediately after death and involves the destruction of soft tissue, leaving behind skeletonized remains. The chemical process of decomposition is complex and involves the breakdown of soft tissue, as the body passes through the sequential stages of decomposition. Autolysis and putrefaction also play major roles in the disintegration of cells and tissues.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

<span class="mw-page-title-main">Thanatotranscriptome</span> Part of the genome still active in the time immediately following death

The thanatotranscriptome denotes all RNA transcripts produced from the portions of the genome still active or awakened in the internal organs of a body following its death. It is relevant to the study of the biochemistry, microbiology, and biophysics of thanatology, in particular within forensic science. Some genes may continue to be expressed in cells for up to 48 hours after death, producing new mRNA. Certain genes that are generally inhibited since the end of fetal development may be expressed again at this time.

<span class="mw-page-title-main">Corpse decomposition</span> Process in which animal bodies break down

Decomposition is the process in which the organs and complex molecules of animal and human bodies break down into simple organic matter over time. In vertebrates, five stages of decomposition are typically recognized: fresh, bloat, active decay, advanced decay, and dry/skeletonized. Knowing the different stages of decomposition can help investigators in determining the post-mortem interval (PMI). The rate of decomposition of human remains can vary due to environmental factors and other factors. Environmental factors include temperature, burning, humidity, and the availability of oxygen. Other factors include body size, clothing, and the cause of death.

Vertical transmission of symbionts is the transfer of a microbial symbiont from the parent directly to the offspring. Many metazoan species carry symbiotic bacteria which play a mutualistic, commensal, or parasitic role. A symbiont is acquired by a host via horizontal, vertical, or mixed transmission.

The stages of death of a human being have medical, biochemical and legal aspects. The term taphonomy from palaeontology applies to the fate of all kinds of remains of organisms. Forensic taphonomy is concerned with remains of the.

References

  1. Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL (March 2013). "Seasonal necrophagous insect community assembly during vertebrate carrion decomposition". Journal of Medical Entomology. 50 (2): 440–50. doi: 10.1603/me12194 . PMID   23540134. S2CID   2244448.
  2. Yong E (2015-12-10). "Meet the Necrobiome: The Microbes That Will Eat Your Corpse". The Atlantic. Retrieved 2020-04-28.
  3. 1 2 Janaway RC (1996). "The decay of buried human remains and their associated materials.". In Hunter J, Roberts C, Martin A (eds.). Studies in Crime: An Introduction to Forensic Archaeology. London: Batsford. pp. 58–85.
  4. Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA (May 2002). "Decomposition chemistry of human remains: a new methodology for determining the postmortem interval". Journal of Forensic Sciences. 47 (3): 542–53. doi:10.1520/JFS15294J. PMID   12051334.
  5. 1 2 3 4 Ventura Spagnolo E, Stassi C, Mondello C, Zerbo S, Milone L, Argo A (February 2019). "Forensic microbiology applications: A systematic review". Legal Medicine. 36: 73–80. doi:10.1016/j.legalmed.2018.11.002. PMID   30419494. S2CID   53293516.
  6. 1 2 Zhou W, Bian Y (2018-04-03). "Thanatomicrobiome composition profiling as a tool for forensic investigation". Forensic Sciences Research. 3 (2): 105–110. doi:10.1080/20961790.2018.1466430. PMC   6197100 . PMID   30483658.
  7. 1 2 3 Javan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM (July 2016). "Human Thanatomicrobiome Succession and Time Since Death". Scientific Reports. 6 (1): 29598. Bibcode:2016NatSR...629598J. doi:10.1038/srep29598. PMC   4944132 . PMID   27412051.
  8. 1 2 3 4 Ghosh SK (September 2015). "Human cadaveric dissection: a historical account from ancient Greece to the modern era". Anatomy & Cell Biology. 48 (3): 153–69. doi:10.5115/acb.2015.48.3.153. PMC   4582158 . PMID   26417475.
  9. Young E (2016). I contain multitudes: the microbes within us and a grander view of life. New York: HarperCollins Publishers. ISBN   978-0-06-236860-7.
  10. Riedel S (April 2014). "The value of postmortem microbiology cultures". Journal of Clinical Microbiology. 52 (4): 1028–33. doi:10.1128/JCM.03102-13. PMC   3993482 . PMID   24403308.
  11. 1 2 3 Hyde ER, Metcalf JL, Bucheli SR, Lynne AM, Knight R (2017). "Microbial communities associated with decomposing corpses". Forensic Microbiology. John Wiley & Sons, Ltd: 245–273. doi:10.1002/9781119062585.ch10. ISBN   978-1-119-06258-5.
  12. Finley SJ, Benbow ME, Javan GT (May 2015). "Microbial communities associated with human decomposition and their potential use as postmortem clocks". International Journal of Legal Medicine. 129 (3): 623–32. doi:10.1007/s00414-014-1059-0. PMID   25129823. S2CID   7939775.
  13. Burcham ZM, Hood JA, Pechal JL, Krausz KL, Bose JL, Schmidt CJ, et al. (July 2016). "Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration". Forensic Science International. 264: 63–9. doi: 10.1016/j.forsciint.2016.03.019 . PMID   27032615.
  14. Carter DO, Metcalf JL, Bibat A, Knight R (June 2015). "Seasonal variation of postmortem microbial communities". Forensic Science, Medicine, and Pathology. 11 (2): 202–7. doi:10.1007/s12024-015-9667-7. PMC   9636889 . PMID   25737335. S2CID   23968523.
  15. Pechal JL, Crippen TL, Tarone AM, Lewis AJ, Tomberlin JK, Benbow ME (2013-11-12). "Microbial community functional change during vertebrate carrion decomposition". PLOS ONE. 8 (11): e79035. Bibcode:2013PLoSO...879035P. doi: 10.1371/journal.pone.0079035 . PMC   3827085 . PMID   24265741.
  16. Schoenly KG, Haskell NH, Mills DK, Bieme-Ndi C, Larsen K, Lee Y (2006-09-01). "Recreating Death's Acre in the School Yard: Using Pig Carcasses as Model Corpses, to Teach Concepts of Forensic Entomology & Ecological Succession". The American Biology Teacher. 68 (7): 402–410. doi:10.2307/4452028. JSTOR   4452028.
  17. 1 2 3 4 Parkinson RA, Dias KR, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009). "Microbial Community Analysis of Human Decomposition on Soil". Criminal and Environmental Soil Forensics. Dordrecht: Springer. pp. 379–394. doi:10.1007/978-1-4020-9204-6_24. ISBN   978-1-4020-9203-9.
  18. Fu, Xiaoliang; Guo, Juanjuan; Finkelbergs, Dmitrijs; He, Jing; Zha, Lagabaiyila; Guo, Yadong; Cai, Jifeng (September 2019). "Fungal succession during mammalian cadaver decomposition and potential forensic implications". Scientific Reports. 9 (12907): 12907. Bibcode:2019NatSR...912907F. doi: 10.1038/s41598-019-49361-0 . PMC   6733900 . PMID   31501472.
  19. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C (June 2015). "Identifying personal microbiomes using metagenomic codes". Proceedings of the National Academy of Sciences of the United States of America. 112 (22): E2930-8. Bibcode:2015PNAS..112E2930F. doi: 10.1073/pnas.1423854112 . PMC   4460507 . PMID   25964341.
  20. Benbow ME, Lewis AJ, Tomberlin JK, Pechal JL (March 2013). "Seasonal necrophagous insect community assembly during vertebrate carrion decomposition". Journal of Medical Entomology. 50 (2): 440–50. doi: 10.1603/me12194 . PMID   23540134. S2CID   2244448.
  21. Lehman DC (April 2014). "Forensic Microbiology". Clinical Microbiology Newsletter. 36 (7): 49–54. doi:10.1016/j.clinmicnews.2014.03.001.
  22. Jessica L Metcalf; Laura Wegener Parfrey; Antonio Gonzalez; et al. (15 October 2013). "A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system". eLife . 2: e01104. doi: 10.7554/ELIFE.01104 . ISSN   2050-084X. PMC   3796315 . PMID   24137541. Wikidata   Q35020251.
  23. Hauther KA, Cobaugh KL, Jantz LM, Sparer TE, DeBruyn JM (September 2015). "Estimating Time Since Death from Postmortem Human Gut Microbial Communities". Journal of Forensic Sciences. 60 (5): 1234–40. doi:10.1111/1556-4029.12828. PMID   26096156. S2CID   28321113.
  24. Vass A (2001). "Beyond the grave—understanding human decomposition". Microbiology Today. 28 (28): 190–192.
  25. 1 2 Hyde ER, Haarmann DP, Lynne AM, Bucheli SR, Petrosino JF (2013-10-30). "The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition". PLOS ONE. 8 (10): e77733. Bibcode:2013PLoSO...877733H. doi: 10.1371/journal.pone.0077733 . PMC   3813760 . PMID   24204941.
  26. 1 2 3 4 5 Engelhaupt, Erika (2020). Gory details: adventures from the dark side of science. Washington, DC: National Geographic Partners, LLC. ISBN   978-1-4262-2098-2.
  27. 1 2 3 4 Erzinçlioglu Z (1 January 2003). "Forensic entomology". Clinical Medicine. 3 (1): 74–6. doi:10.7861/clinmedicine.3-1-74. PMC   4953364 . PMID   12617420.
  28. 1 2 Wallman JF (December 2017). "Body farms". Forensic Science, Medicine, and Pathology. 13 (4): 487–489. doi:10.1007/s12024-017-9932-z. PMID   29075978. S2CID   28905230.
  29. 1 2 Tuccia F, Zurgani E, Bortolini S, Vanin S (September 2019). "Experimental evaluation on the applicability of necrobiome analysis in forensic veterinary science". MicrobiologyOpen. 8 (9): e00828. doi:10.1002/mbo3.828. PMC   6741123 . PMID   30861327.
  30. Metcalf JL (January 2019). "Estimating the postmortem interval using microbes: Knowledge gaps and a path to technology adoption". Forensic Science International. Genetics. 38: 211–218. doi: 10.1016/j.fsigen.2018.11.004 . PMID   30448529.
  31. Johnson HR, Trinidad DD, Guzman S, Khan Z, Parziale JV, DeBruyn JM, Lents NH (2016). "A Machine Learning Approach for Using the Postmortem Skin Microbiome to Estimate the Postmortem Interval". PLOS ONE. 11 (12): e0167370. Bibcode:2016PLoSO..1167370J. doi: 10.1371/journal.pone.0167370 . PMC   5179130 . PMID   28005908.