Neonatal meningitis

Last updated
Neonatal meningitis
Meninges-en.svg
The meninges
Specialty Neonatology

Neonatal meningitis is a serious medical condition in infants that is rapidly fatal if untreated. Meningitis, an inflammation of the meninges, the protective membranes of the central nervous system, is more common in the neonatal period (infants less than 44 days old) than any other time in life, and is an important cause of morbidity and mortality globally. [1] [2] Mortality is roughly half in developing countries and ranges from 8%-12.5% in developed countries. [2] [3]

Contents

Symptoms seen with neonatal meningitis are often unspecific and may point to several conditions, such as sepsis (whole body inflammation). These can include fever, irritability, and shortness of breath. The only method to determine if meningitis is the cause of these symptoms is lumbar puncture (an examination of the cerebrospinal fluid). [1] [4]

The most common cause of neonatal meningitis is bacterial infection of blood, known as bacteremia. Organisms responsible are different; most commonly group B streptococci (i.e. Streptococcus agalactiae ), Escherichia coli , and Listeria monocytogenes . [1] Although there is a low mortality rate in developed countries, there is a 50% prevalence rate of neurodevelopmental disabilities after meningitis caused by E. coli and Streptococcus agalactiae, and a 79% prevalence after meningitis caused by Gram-negative rods other than E. coli. [1] Delayed treatment of neonatal meningitis may cause cerebral palsy, blindness, deafness, seizure disorders, and learning deficiencies. [5]

Signs and symptoms

The following is a list of common signs and symptoms of neonatal meningitis.[ citation needed ]

These symptoms are unspecific and may point to many different conditions. [4]

Complications

Neuroimaging (X-ray imaging of the brain) is recommended to detect the complications of meningitis. Complications should be suspected when the clinical course is characterized by shock, respiratory failure, focal neurological deficits, a positive cerebrospinal fluid culture after 48 to 72 hours of appropriate antibiotic therapy, or infection with certain organisms, such as Citrobacter koseri and Cronobacter sakazakii for example. Ultrasounds are useful for early imaging to determine ventricular size and hemorrhaging. CT scans later in the therapy should be used to dictate prolonged treatment. [1] [6]

If intracranial abscesses (collection of pus in the brain) are found, treatment consisting of a combination of surgical drainage of the abscess and antimicrobial therapy for 4 to 6 weeks is recommended. More imaging should be completed after the end of antibiotic treatment because abscesses have been found after weeks from start of treatment. [6]

Relapses have also occurred after appropriate treatment when infected by Gram-negative enteric bacilli. [6]

Hearing Loss

Meningitis is one of the leading causes of acquired deafness. Nearly 8% of those with Meningitis will have a permanent sensorineural hearing loss. [7] The longer meningitis is left untreated, the greater the risk of seizures and permanent neurological damage such as hearing loss, memory difficulty, learning disabilities, brain damage, gait problems, kidney failure, shock, and even death. [8] Hearing loss in those with Meningitis can occur when the body is fighting off the infection and the cells reach the inner ear where the hair cells and nerve fibers become damaged. [9] Hearing loss can also occur after Meningitis is resolved due to an increased risk for ossification of the cochlea. Ossification of the cochlea can make it difficult to place a Cochlear Implant for hearing losses that are treated unsuccessfully with hearing aids. [10] Bacterial Meningitis is likely to lead to hearing loss. [11] It is important to have a hearing test as soon as possible. It would be best to complete a hearing test before leaving the hospital or within four weeks of improvement of symptoms. [12] Fluctuating hearing loss has been observed in a large number of patients, so it is best to have routine hearing tests to monitor the hearing loss. [13] Viral Meningitis is less likely to cause hearing loss and it is recommended to perform a hearing test if the patient is experiencing any hearing difficulties. [14] All hearing losses are different so there is no predictive loss for Meningitis. Children are assessed through behavioral testing (if old enough), Otoacoustic Emissions (OAEs), and Auditory Brainstem Response (ABR).[ citation needed ]

Impact in Children for Communication

If hearing loss is left undetected and/or untreated, this can lead to later acquisition of language and delayed reading skills. Since untreated Meningitis can cause brain damage and learning disabilities, children with a history of Meningitis may be developmentally delayed when compared to their typically developing peers.[ citation needed ]

Laboratory features

Laboratory features that are characteristic of neonatal bacterial meningitis include: [15]

Causes

Streptococci Streptococci.jpg
Streptococci
Escherichia coli E. coli Bacteria (7316101966).jpg
Escherichia coli
Electron micrograph of a flagellated Listeria monocytogenes, Magnified 41,250X. Listeria monocytogenes PHIL 2287 lores.jpg
Electron micrograph of a flagellated Listeria monocytogenes , Magnified 41,250X.
Streptococcus pneumoniae in cerebrospinal fluid Pneumococcus CDC PHIL ID1003.jpg
Streptococcus pneumoniae in cerebrospinal fluid
Scanning electron micrograph shows Staphylococcus aureus. Staphylococcus aureus 01.jpg
Scanning electron micrograph shows Staphylococcus aureus.
Transmission electron micrograph of Herpes simplex virus. Herpes simplex virus TEM B82-0474 lores.jpg
Transmission electron micrograph of Herpes simplex virus.

Neonatal meningitis is caused by group B streptococci Streptococcus agalactiae (39%-48% of cases), Escherichia coli (30%-35%), other Gram-negative rods (8%-12%), Streptococcus pneumoniae (about 6%), and Listeria monocytogenes (5%-7%). [1] Meningitis is typically caused from either a bacterial or viral infection, however, it can be caused by fungal, parasitic, or amebic infections as well. [16] [17] Even more rare, Meningitis can be caused by some cancers, Lupus, specific drugs, head injuries, and brain surgeries. [18] Most neonatal meningitis results from bacteremia (bacterial infection of the blood) with hematogenous spread to the central nervous system (CNS). [4] [5]

Early-onset

In early-onset neonatal meningitis, acquisition of the bacteria is from the mother either before the baby is born or during birth. The most common bacteria found in early-onset are Streptococcus agalactiae, Escherichia coli, and Listeria monocytogenes. In developing countries, Gram-negative enteric (gut) bacteria are responsible for the majority of early onset meningitis. [1]

Late-onset

Late-onset meningitis may be caused by other Gram-negative bacteria and staphylococcal species. In developing countries, Streptococcus pneumoniae accounts for most cases of late onset. [1]

Herpes Simplex Virus

Herpes simplex virus is a rare cause of meningitis, occurring only 0.165 in 10,000 live births in the UK and 0.2-5 in 10,000 live births in the US [2] [4] [19] Both HSV-1 and HSV-2 can cause neonatal meningitis, however, HSV-2 accounts for 70% of the cases.[ citation needed ]

Herpes simplex virus is transmitted to neonates mainly during delivery (when infected maternal secretions come into contact with the baby and accounting for 85% of cases), but also occur in utero (while the fetus is still in the womb, 5% of cases) or even post-delivery, receiving the infection from the community (10% of cases). [19] The most important factors impacting the transmission of the virus is the stage of the mother's infection (symptomatic or non-symptomatic) and the damage of any maternal membranes during birth (the longer the tissue is damaged, the higher the chance of neonatal infection). [19]

Pathogenesis

Generally, the progression of neonatal meningitis starts with bacteria colonizing the gastrointestinal tract. The bacteria then invades through the intestinal mucosa layer into the blood, causing bacteremia followed by invasion of the cerebrospinal fluid. The neonate's less efficient immune system (especially the alternative complement system) lessens their defense against invading bacteria. Colonization of the mother plays an important role in transmission to the neonate, causing early-onset meningitis. [5]

Group B Streptococcus

Neonatal Streptococcus agalactiae infection is acquired in utero or during passage through the vagina. Evidence suggests that vaginal colonization by Streptococcus agalactiae during pregnancy increases the risk of vertical transmission and early-onset disease in neonates. [20]

Neonatal meningitis-causing E. coli

Some strains of E. coli have a capsule, called K1, which protects the bacteria from the innate immune system and allows it to penetrate the central nervous system. The capsule contains sialic acid, which is found widely in humans and so does not set off the defenses of the body. Sialic acid also plays a role in the bacteria's ability to invade through the blood–brain barrier. The capsule can be variably O-acetylated. [5]

Diagnosis

Bacterial Infection

A lumbar puncture (spinal tap) is necessary to diagnose meningitis. Cerebrospinal fluid culture is the most important study for the diagnosis of neonatal bacterial meningitis because clinical signs are non-specific and unreliable. Blood cultures may be negative in 15-55% of cases, making them unreliable as well. [1] However, a cerebrospinal fluid to blood glucose ratio below two-thirds has a strong relationship to bacterial meningitis. [6] A spinal tap should be done in all neonates with suspected meningitis, with suspected or proven sepsis (whole body inflammation) and should be considered in all neonates in whom sepsis is a possibility. The role of the spinal tap in neonates who are healthy appearing but have maternal risk factors for sepsis is more controversial; its diagnostic yield in these patients may be low. [1] [6]

Early-onset is deemed when infection is within one week of birth. Late-onset is deemed after the first week. [3]

Viral Infection

Babies born from mothers with symptoms of Herpes simplex virus should be tested for viral infection. Liver tests, complete blood count, cerebrospinal fluid analysis, and a chest X-ray should all be completed to diagnose meningitis. [19] Samples should be taken from skin, conjunctiva (eye), mouth and throat, rectum, urine, and the cerebrospinal fluid for viral culture and polymerase chain reaction.[ citation needed ]

Prevention

Bacterial

Prevention of neonatal meningitis is primarily intrapartum (during labor) antibiotic prophylaxis (prevention) of pregnant mothers to decrease chance of early-onset meningitis by Streptococcus agalactiae. For late-onset meningitis, prevention is passed onto the caretakers to stop the spread of infectious microorganisms. Proper hygiene habits are first and foremost, while stopping improper antibiotic use; such as over-prescriptions, use of broad spectrum antibiotics, and extended dosing times will aid prevention of late-onset neonatal meningitis. A possible prevention may be vaccination of mothers against Streptococcus agalactiae and E. coli, however, this is still under development. [1] [6]

Viral

The only form of prevention from viral infection of the neonate is a Caesarean section form of delivery if the mother is showing symptoms of infection. [19]

Treatment

cal structure of penicillin Penicillin core.svg
cal structure of penicillin
cal structure of gentamicin Gentamicin C2.svg
cal structure of gentamicin
Chemical structure of cefotaxime Cefotaxime.svg
Chemical structure of cefotaxime
Chemical structure of Ceftazidime Ceftazidime.svg
Chemical structure of Ceftazidime
Chemical structure of ampicillin Ampicillin Structural Formulae V.1.svg
Chemical structure of ampicillin
Chemical structure of aciclovir Aciclovir structure.svg
Chemical structure of aciclovir

Treatment for meningitis is antibiotics. The particular drugs used are based on culture results that identify the infecting bacteria, but a mix of ampicillin, gentamicin, and cefotaxime is used for early-onset meningitis before their identification. A regimen of antistaphylococcal antibiotic, such as nafcillin or vancomycin, plus cefotaxime or ceftazidime with or without an aminoglycoside is recommended for late-onset neonatal meningitis. The aim for these treatments is to sterilize the cerebrospinal fluid of all pathogens. A repeat spinal tap 24 to 48 hours after treatment has been started should be done to confirm sterilization. [1] [6]

Limited evidence suggests that adjuvant corticosteroids may reduce the short-term risk of hearing loss in newborn infants with meningitis, but it is uncertain whether corticosteroids help to reduce the risk of death or longer-term hearing loss. [21]

Group B Streptococci

For meningitis suspected to be caused by Streptococcus agalactiae, the following treatment is recommended by the American Academy of Pediatrics: doses of penicillin up to 450 000 U/kg daily (270 mg/kg/day) divided 8 hourly if <7 days of age and divided 6 hourly if >7 days of age. For penicillin [the recommended dose is up to 300 mg/kg/daily divided 8 hourly if <7 days of age or 4–6 hourly if >7 days of age. After confirmation of Streptococcus agalactiae by culture, penicillin alone should be used for the rest of the course of treatment, including the 14-day post-sterilization therapy. [1] [6]

Gram-negative Enterics

For suspected Gram-negative enteric (including E. coli ) meningitis a combination of cefotaxime and aminoglycoside, usually gentamicin, is recommended. This treatment should last for 14 days after sterilization and then only cefotaxime for another 7 days creating a minimum of 21 days of therapy after sterilization. [1] [6]

Listeria monocytogenes

Meningitis caused by Listeria monocytogenes should be treated with a combination of ampicillin and gentamicin because it is synergistic in vitro and provides more rapid bacterial clearance in animal models of infection.[ citation needed ]

Streptococcus pneumoniae

Streptococcus pneumoniae can be treated with either penicillin or ampicillin. [1] [6]

Herpes Simplex Virus

In cases of meningitis caused by Herpes simplex virus, antiviral therapy with (acyclovir or vidarabine) must be started immediately for a favorable outcome. [1] [6] Acyclovir is a better antiviral because it shows a similar effect on the infection as vidarabine and is safer to use in neonates. The recommended dosage is 20 mg/kg every six hours for 21 days. [19]

Epidemiology

In industrialized countries, the incidence of bacterial meningitis is approximately 3 in 10,000 live births. The incidence of Herpes simplex virus meningitis is estimated to be 0.2-5.0 cases per 10,000 live births. Neonatal meningitis is much more common in developing countries. Neonatal meningitis ranges from 4.8 per 10,000 live births in Hong Kong to 24 per 10,000 live births in Kuwait. In Africa and South Asia, figures ranging from 8.0 to 61 per 10,000 live births are found. It is expected that these numbers are lower than reality due to the difficulty of diagnosing and the healthcare available to underdeveloped countries in Asia and Africa. [2] [3]


Related Research Articles

<span class="mw-page-title-main">Viral meningitis</span> Medical condition

Viral meningitis, also known as aseptic meningitis, is a type of meningitis due to a viral infection. It results in inflammation of the meninges. Symptoms commonly include headache, fever, sensitivity to light and neck stiffness.

<span class="mw-page-title-main">Septic arthritis</span> Medical condition

Acute septic arthritis, infectious arthritis, suppurative arthritis, pyogenic arthritis, osteomyelitis, or joint infection is the invasion of a joint by an infectious agent resulting in joint inflammation. Generally speaking, symptoms typically include redness, heat and pain in a single joint associated with a decreased ability to move the joint. Onset is usually rapid. Other symptoms may include fever, weakness and headache. Occasionally, more than one joint may be involved, especially in neonates, younger children and immunocompromised individuals. In neonates, infants during the first year of life, and toddlers, the signs and symptoms of septic arthritis can be deceptive and mimic other infectious and non-infectious disorders.

<span class="mw-page-title-main">Aseptic meningitis</span> Medical condition

Aseptic meningitis is the inflammation of the meninges, a membrane covering the brain and spinal cord, in patients whose cerebral spinal fluid test result is negative with routine bacterial cultures. Aseptic meningitis is caused by viruses, mycobacteria, spirochetes, fungi, medications, and cancer malignancies. The testing for both meningitis and aseptic meningitis is mostly the same. A cerebrospinal fluid sample is taken by lumbar puncture and is tested for leukocyte levels to determine if there is an infection and goes on to further testing to see what the actual cause is. The symptoms are the same for both meningitis and aseptic meningitis but the severity of the symptoms and the treatment can depend on the certain cause.

<span class="mw-page-title-main">Imipenem/cilastatin</span> Combination antibiotic medication

Imipenem/cilastatin, sold under the brand name Primaxin among others, is an antibiotic useful for the treatment of a number of bacterial infections. It is made from a combination of imipenem and cilastatin. Specifically it is used for pneumonia, sepsis, endocarditis, joint infections, intra-abdominal infections, and urinary tract infections. It is given by injection into a vein or muscle.

Omphalitis of newborn is the medical term for inflammation of the umbilical cord stump in the neonatal newborn period, most commonly attributed to a bacterial infection. Typically immediately after an infant is born, the umbilical cord is cut with a small remnant left behind. Normally the stump separates from the skin within 3–45 days after birth. A small amount of pus-like material is commonly seen at the base of the stump and can be controlled by keeping the stump open to air to dry. Certain bacteria can grow and infect the stump during this process and as a result significant redness and swelling may develop, and in some cases the infection can then spread through the umbilical vessels to the rest of the body. While currently an uncommon anatomical location for infection in the newborn in the United States, it has caused significant morbidity and mortality both historically and in areas where health care is less readily available. In general, when this type of infection is suspected or diagnosed, antibiotic treatment is given, and in cases of serious complications surgical management may be appropriate.

<i>Streptococcus agalactiae</i> Species of bacterium

Streptococcus agalactiae is a gram-positive coccus with a tendency to form chains. It is a beta-hemolytic, catalase-negative, and facultative anaerobe.

Community-acquired pneumonia (CAP) refers to pneumonia contracted by a person outside of the healthcare system. In contrast, hospital-acquired pneumonia (HAP) is seen in patients who have recently visited a hospital or who live in long-term care facilities. CAP is common, affecting people of all ages, and its symptoms occur as a result of oxygen-absorbing areas of the lung (alveoli) filling with fluid. This inhibits lung function, causing dyspnea, fever, chest pains and cough.

<span class="mw-page-title-main">Cefotaxime</span> Chemical compound

Cefotaxime is an antibiotic used to treat a number of bacterial infections in human, other animals and plant tissue culture. Specifically in humans it is used to treat joint infections, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, sepsis, gonorrhea, and cellulitis. It is given either by injection into a vein or muscle.

<span class="mw-page-title-main">Amikacin</span> Antibiotic medication

Amikacin is an antibiotic medication used for a number of bacterial infections. This includes joint infections, intra-abdominal infections, meningitis, pneumonia, sepsis, and urinary tract infections. It is also used for the treatment of multidrug-resistant tuberculosis. It is used by injection into a vein using an IV or into a muscle.

<span class="mw-page-title-main">Group B streptococcal infection</span> Medical condition

Group B streptococcal infection, also known as Group B streptococcal disease or just Group B strep infection, is the infectious disease caused by the bacterium Streptococcus agalactiae, which is the most common human pathogen belonging to the group B of the Lancefield classification of streptococci—hence the group B stretococcal (GBS) infection nomenclature. Infection with GBS can cause serious illness and sometimes death, especially in newborns, the elderly, and people with compromised immune systems. The most severe form of group B streptococcal disease is neonatal meningitis in infants, which is frequently lethal and can cause permanent neuro-cognitive impairment.

<span class="mw-page-title-main">Chorioamnionitis</span> Medical condition

Chorioamnionitis, also known as intra-amniotic infection (IAI), is inflammation of the fetal membranes, usually due to bacterial infection. In 2015, a National Institute of Child Health and Human Development Workshop expert panel recommended use of the term "triple I" to address the heterogeneity of this disorder. The term triple I refers to intrauterine infection or inflammation or both and is defined by strict diagnostic criteria, but this terminology has not been commonly adopted although the criteria are used.

<span class="mw-page-title-main">Neonatal conjunctivitis</span> Medical condition

Neonatal conjunctivitis is a form of conjunctivitis which affects newborn babies following birth. It is typically due to neonatal bacterial infection, although it can also be non-infectious. Infectious neonatal conjunctivitis is typically contracted during vaginal delivery from exposure to bacteria from the birth canal, most commonly Neisseria gonorrhoeae or Chlamydia trachomatis.

<span class="mw-page-title-main">Cefquinome</span> Chemical compound

Cefquinome is a fourth-generation cephalosporin with pharmacological and antibacterial properties valuable in the treatment of coliform mastitis and other infections. It is only used in veterinary applications.

<span class="mw-page-title-main">Corneal ulcer</span> Medical condition of the eye

Corneal ulcer, also called keratitis, is an inflammatory or, more seriously, infective condition of the cornea involving disruption of its epithelial layer with involvement of the corneal stroma. It is a common condition in humans particularly in the tropics and in farming. In developing countries, children afflicted by vitamin A deficiency are at high risk for corneal ulcer and may become blind in both eyes persisting throughout life. In ophthalmology, a corneal ulcer usually refers to having an infection, while the term corneal abrasion refers more to a scratch injury.

<span class="mw-page-title-main">Mollaret's meningitis</span> Medical condition

Mollaret's meningitis is a recurrent or chronic inflammation of the protective membranes covering the brain and spinal cord, known collectively as the meninges. Since Mollaret's meningitis is a recurrent, benign (non-cancerous), aseptic meningitis, it is also referred to as benign recurrent lymphocytic meningitis. It was named for Pierre Mollaret, the French neurologist who first described it in 1944.

<span class="mw-page-title-main">Meningitis</span> Inflammation of the membranes around the brain and spinal cord

Meningitis is acute or chronic inflammation of the protective membranes covering the brain and spinal cord, collectively called the meninges. The most common symptoms are fever, intense headache, vomiting and neck stiffness and occasionally photophobia.

Neonatal herpes simplex, or simply neonatal herpes, is a herpes infection in a newborn baby caused by the herpes simplex virus (HSV), mostly as a result of vertical transmission of the HSV from an affected mother to her baby. Types include skin, eye, and mouth herpes (SEM), disseminated herpes (DIS), and central nervous system herpes (CNS). Depending on the type, symptoms vary from a fever to small blisters, irritability, low body temperature, lethargy, breathing difficulty, and a large abdomen due to ascites or large liver. There may be red streaming eyes or no symptoms.

Neonatal sepsis is a type of neonatal infection and specifically refers to the presence in a newborn baby of a bacterial blood stream infection (BSI) in the setting of fever. Older textbooks may refer to neonatal sepsis as "sepsis neonatorum". Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable. Neonatal sepsis is divided into two categories: early-onset sepsis (EOS) and late-onset sepsis (LOS). EOS refers to sepsis presenting in the first 7 days of life, with LOS referring to presentation of sepsis after 7 days. Neonatal sepsis is the single most common cause of neonatal death in hospital as well as community in developing country.

Citrobacter koseri, formerly known as Citrobacter diversus, is a Gram-negative non-spore forming, rod-shaped bacterium. It is a facultative anaerobe capable of aerobic respiration. It is motile via peritrichous flagella. It is a member of the family of Enterobacteriaceae. The members of this family are part of the normal flora and commonly found in the digestive tracts of humans and animals. C. koseri may act as an opportunistic pathogen in individuals who are immunocompromised.

<span class="mw-page-title-main">Neonatal infection</span> Human disease

Neonatal infections are infections of the neonate (newborn) acquired during prenatal development or within the first four weeks of life. Neonatal infections may be contracted by mother to child transmission, in the birth canal during childbirth, or after birth. Neonatal infections may present soon after delivery, or take several weeks to show symptoms. Some neonatal infections such as HIV, hepatitis B, and malaria do not become apparent until much later. Signs and symptoms of infection may include respiratory distress, temperature instability, irritability, poor feeding, failure to thrive, persistent crying and skin rashes.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Heath, P T (2003). "Neonatal meningitis". Archives of Disease in Childhood: Fetal and Neonatal Edition. 88 (3): F173–8. doi:10.1136/fn.88.3.F173. PMC   1721548 . PMID   12719388.
  2. 1 2 3 4 Neonatal Meningitis at eMedicine
  3. 1 2 3 Furyk, J. S.; Swann, O.; Molyneux, E. (2011). "Systematic review: neonatal meningitis in the developing world". Tropical Medicine & International Health. 16 (6): 672–9. doi:10.1111/j.1365-3156.2011.02750.x. PMID   21395927.
  4. 1 2 3 4 Lin, Mu-Chun; Chi, Hsin; Chiu, Nan-Chang; Huang, Fu-Yuan; Ho, Che-Sheng (2012). "Factors for poor prognosis of neonatal bacterial meningitis in a medical center in Northern Taiwan". Journal of Microbiology, Immunology and Infection. 45 (6): 442–7. doi:10.1016/j.jmii.2011.12.034. PMID   22571998.
  5. 1 2 3 4 Wilson, Brenda A.; Salyers, Abigail A.; Whitt, Dixie D.; et al., eds. (2011). Bacterial Pathogenesis: A Molecular Approach (3rd ed.). ASM. pp. 212–3, 441. ISBN   978-1-55581-418-2.
  6. 1 2 3 4 5 6 7 8 9 10 11 Sivanandan, S., Soraisham, A. S., & Swarnam, K. (2011). Choice and duration of antimicrobial therapy for neonatal sepsis and meningitis. International Journal of Pediatrics, 2011
  7. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  8. "Meningitis - Symptoms and causes". Mayo Clinic. Retrieved 2020-04-07.
  9. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  10. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  11. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  12. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  13. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  14. "Hearing loss following meningitis | Meningitis Now". www.meningitisnow.org. Retrieved 2020-04-07.
  15. Edwards, Morven S; Baker, Carol J (August 23, 2013). "Bacterial meningitis in the neonate: Clinical features and diagnosis". UpToDate .
  16. "Meningitis | Home | CDC". www.cdc.gov. 2020-02-19. Retrieved 2020-04-07.
  17. "Meningitis - Symptoms and causes". Mayo Clinic. Retrieved 2020-04-07.
  18. "Meningitis - Symptoms and causes". Mayo Clinic. Retrieved 2020-04-07.
  19. 1 2 3 4 5 6 Kimberlin, D. (2004). Herpes simplex virus, meningitis and encephalitis in neonates. breast, 20, 22.
  20. Puopolo, Karen M; Baker, Carol J (August 10, 2015). "Group B streptococcal infection in neonates and young infants". UpToDate .
  21. Ogunlesi, TA; Odigwe, CC; Oladapo, OT (11 November 2015). "Adjuvant corticosteroids for reducing death in neonatal bacterial meningitis". The Cochrane Database of Systematic Reviews (11): CD010435. doi: 10.1002/14651858.CD010435.pub2 . PMC   10542916 . PMID   26560739.