Neptunocene

Last updated
Neptunocene
Neptunocene.png
Neptunocene-from-xtal-3D-balls.png
Names
IUPAC name
Bis(η8-cyclooctatetraenyl)neptunium(IV)
Other names
Neptunium cyclooctatetraenide
Np(COT)2
Identifiers
3D model (JSmol)
  • InChI=1S/2C5H5.Np/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2
    Key: FXDJOXAJBKYPFW-UHFFFAOYSA-N
  • c1=c[cH-]c=c[cH]c=c1.[Np+4].c1=c[cH-]c=c[cH-]c=c1
Properties
C16H16Np
Molar mass 445 g·mol−1
Appearancedark brown crystals as a solid, yellow in dilute solution
insoluble, does not react with water
Solubility in chlorocarbonssparingly soluble (ca. 0.5 g/L)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
radiation hazard, pyrophoric
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Neptunocene, Np(C8H8)2, is an organoneptunium compound composed of a neptunium atom sandwiched between two cyclooctatetraenide (COT2-) rings. As a solid it has a dark brown/red colour but it appears yellow when dissolved in chlorocarbons, in which it is sparingly soluble. [1] [2] [3] [4] [5] The compound is quite air-sensitive. [1] [2] [5]

Contents

It was one of the first organoneptunium compounds to be synthesised, and is a member of the actinocene family of actinide-based metallocenes. [2]

Structure

The sandwich structure of neptunocene has been determined by single crystal XRD. [4] The COT2- rings are found to be planar with 8 equivalent C–C bonds of 1.385 Å length, and sit parallel in an eclipsed conformation. The Np–COT distance (to the ring centroid) is 1.909 Å and the individual Np–C distances are 2.630 Å. [4]

Neptunocene assumes a monoclinic crystal structure (P21/n space group) which is isomorphous to uranocene and thorocene but not to plutonocene. [4]

Synthesis and properties

Neptunocene was first synthesised in 1970 by reacting neptunium(IV) chloride (NpCl4) with dipotassium cyclooctatetraenide (K2(C8H8)) in diethyl ether or THF: [1]

NpCl4 + 2 K2(C8H8) → Np(C8H8)2 + 4 KCl

The same reaction conditions have been routinely reproduced since then for the synthesis of the compound. [3] [4]

The three actinocenes uranocene, neptunocene, and plutonocene share virtually identical chemistry: they do not react in the presence of water or dilute base, but are very air-sensitive, quickly forming oxides. [1] [2] [3] All three are only slightly soluble (up to about 10−3 M concentrations) in aromatic or chlorinated solvents such as benzene, toluene, carbon tetrachloride or chloroform. [1] [2] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Neptunium</span> Chemical element, symbol Np and atomic number 93

Neptunium is a chemical element; it has symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. It is named after Neptune, the planet beyond Uranus in the Solar System, which uranium is named after. A neptunium atom has 93 protons and 93 electrons, of which seven are valence electrons. Neptunium metal is silvery and tarnishes when exposed to air. The element occurs in three allotropic forms and it normally exhibits five oxidation states, ranging from +3 to +7. Like all actinides, it is radioactive, poisonous, pyrophoric, and capable of accumulating in bones, which makes the handling of neptunium dangerous.

<span class="mw-page-title-main">Cyclooctatetraene</span> Chemical compound

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

Uranocene, U(C8H8)2, is an organouranium compound composed of a uranium atom sandwiched between two cyclooctatetraenide rings. It was one of the first organoactinide compounds to be synthesized. It is a green air-sensitive solid that dissolves in organic solvents. Uranocene, a member of the "actinocenes," a group of metallocenes incorporating elements from the actinide series. It is the most studied bis[8]annulene-metal system, although it has no known practical applications.

<span class="mw-page-title-main">Sandwich compound</span> Chemical compound made of two ring ligands bound to a metal

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula CnHn, substituted derivatives and heterocyclic derivatives. Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

<span class="mw-page-title-main">Organoactinide chemistry</span> Study of chemical compounds containing actinide-carbon bonds

Organoactinide chemistry is the science exploring the properties, structure, and reactivity of organoactinide compounds, which are organometallic compounds containing a carbon to actinide chemical bond.

<span class="mw-page-title-main">Organouranium chemistry</span> Area of chemistry

Organouranium chemistry is the science exploring the properties, structure, and reactivity of organouranium compounds, which are organometallic compounds containing a carbon to uranium chemical bond. The field is of some importance to the nuclear industry and of theoretical interest in organometallic chemistry.

<span class="mw-page-title-main">Ken Raymond</span> American inorganic chemist

Kenneth Norman Raymond is a bioinorganic and coordination chemist. He is Chancellor's Professor of Chemistry at the University of California, Berkeley, Professor of the Graduate School, the Director of the Seaborg Center in the Chemical Sciences Division at Lawrence Berkeley National Laboratory, and the President and Chairman of Lumiphore.

<span class="mw-page-title-main">Neptunium(VI) fluoride</span> Chemical compound

Neptunium(VI) fluoride (NpF6) is the highest fluoride of neptunium, it is also one of seventeen known binary hexafluorides. It is an orange volatile crystalline solid. It is relatively hard to handle, being very corrosive, volatile and radioactive. Neptunium hexafluoride is stable in dry air but reacts vigorously with water.

<span class="mw-page-title-main">Cyclooctatetraenide anion</span> Ion

In chemistry, the cyclooctatetraenide anion or cyclooctatetraenide, more precisely cyclooctatetraenediide, is an aromatic species with a formula of [C8H8]2− and abbreviated as COT2−. It is the dianion of cyclooctatetraene. Salts of the cyclooctatetraenide anion can be stable, e.g., Dipotassium cyclooctatetraenide or disodium cyclooctatetraenide. More complex coordination compounds are known as cyclooctatetraenide complexes, such as the actinocenes.

<span class="mw-page-title-main">Actinocene</span> Class of chemical compounds

Actinocenes are a family of organoactinide compounds consisting of metallocenes containing elements from the actinide series. They typically have a sandwich structure with two dianionic cyclooctatetraenyl ligands (COT2-, which is C
8
H2−
8
) bound to an actinide-metal center (An) in the oxidation state IV, resulting in the general formula An(C8H8)2.

<span class="mw-page-title-main">Thorium compounds</span> Chemical compounds

Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.

<span class="mw-page-title-main">Plutonocene</span> Chemical compound

Plutonocene, Pu(C8H8)2, is an organoplutonium compound composed of a plutonium atom sandwiched between two cyclooctatetraenide (COT2-) rings. It is a dark red, very air-sensitive solid that is sparingly soluble in toluene and chlorocarbons. Plutonocene is a member of the actinocene family of metallocenes incorporating actinide elements in the +4 oxidation state.

Neptunium(III) fluoride or neptunium trifluoride is a salt of neptunium and fluorine with the formula NpF3.

Neptunium(V) fluoride or neptunium pentafluoride is a chemical compound of neptunium and fluorine with the formula NpF5.

<span class="mw-page-title-main">Neptunium(IV) oxalate</span> Chemical compound

Neptunium (IV) oxalate is an inorganic compound, a salt of neptunium and oxalic acid with the chemical formula Np(C2O4)2. The compound is slightly soluble in water, forms crystalline hydrates—green crystals.

Protactinium compounds are compounds containing the element protactinium. These compounds usually have protactinium in the +5 oxidation state, although these compounds can also exist in the +2, +3 and +4 oxidation states.

Neptunium compounds are compounds containg the element neptunium (Np). Neptunium has five ionic oxidation states ranging from +3 to +7 when forming chemical compounds, which can be simultaneously observed in solutions. It is the heaviest actinide that can lose all its valence electrons in a stable compound. The most stable state in solution is +5, but the valence +4 is preferred in solid neptunium compounds. Neptunium metal is very reactive. Ions of neptunium are prone to hydrolysis and formation of coordination compounds.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3, and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

<span class="mw-page-title-main">Organothorium chemistry</span> Study of the carbon-thorium bond

Organothorium chemistry describes the synthesis and properties of organothorium compounds, chemical compounds containing a carbon to thorium chemical bond.

References

  1. 1 2 3 4 5 Karraker, David G.; Stone, John Austin.; Jones, Erwin Rudolph.; Edelstein, Norman. (1970). "Bis(cyclooctatetraenyl)neptunium(IV) and bis(cyclooctatetraenyl)plutonium(IV)". Journal of the American Chemical Society. 92 (16): 4841–4845. doi:10.1021/ja00719a014. ISSN   0002-7863. Archived from the original on 2024-05-03. Retrieved 2021-03-22.
  2. 1 2 3 4 5 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1278–1280. ISBN   9780750633659.
  3. 1 2 3 Eisenberg, David C.; Streitwieser, Andrew; Kot, Wing K. (1990). "Electron transfer in organouranium and transuranium systems". Inorganic Chemistry. 29 (1): 10–14. doi:10.1021/ic00326a004. ISSN   0020-1669. Archived from the original on 2024-05-03. Retrieved 2021-03-22.
  4. 1 2 3 4 5 6 Ridder, D. J. A. De; Rebizant, J.; Apostolidis, C.; Kanellakopulos, B.; Dornberger, E. (1996). "Bis(cyclooctatetraenyl)neptunium(IV)". Acta Crystallographica Section C. 52 (3): 597–600. doi:10.1107/S0108270195013047. ISSN   1600-5759. Archived from the original on 2021-06-12. Retrieved 2021-03-22.
  5. 1 2 3 Yoshida, Zenko; Johnson, Stephen G.; Kimura, Takaumi; Krsul, John R. (2006). "Neptunium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 699–812. doi:10.1007/1-4020-3598-5_6. Archived from the original (PDF) on 2018-01-17. Retrieved 2016-08-07.