Neptunocene

Last updated
Neptunocene
Neptunocene.png
Neptunocene-from-xtal-3D-balls.png
Names
IUPAC name
Bis(η8-cyclooctatetraene)neptunium [1]
Other names
Neptunium cyclooctatetraenide
Np(COT)2
Identifiers
3D model (JSmol)
  • InChI=1S/2C5H5.Np/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2
    Key: FXDJOXAJBKYPFW-UHFFFAOYSA-N
  • c1=c[cH-]c=c[cH-]c=c1.[Np+4].c1=c[cH-]c=c[cH-]c=c1
Properties
C16H16Np
Molar mass 445 g·mol−1
Appearancedark brown crystals as a solid, yellow in dilute solution
insoluble, does not react with water
Solubility in chlorocarbonssparingly soluble (ca. 0.5 g/L)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
radiation hazard, pyrophoric
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Neptunocene, Np(C8H8)2, is an organoneptunium compound composed of a neptunium atom sandwiched between two cyclooctatetraenide (COT2-) rings. As a solid it has a dark brown/red colour but it appears yellow when dissolved in chlorocarbons, in which it is sparingly soluble. [2] [3] [4] [5] [6] The compound is quite air-sensitive. [2] [3] [6]

Contents

It was one of the first organoneptunium compounds to be synthesised, and is a member of the actinocene family of actinide-based metallocenes. [3]

Structure

The sandwich structure of neptunocene has been determined by single crystal XRD. [5] The COT2- rings are found to be planar with 8 equivalent C–C bonds of 1.385 Å length, and sit parallel in an eclipsed conformation. The Np–COT distance (to the ring centroid) is 1.909 Å and the individual Np–C distances are 2.630 Å. [5]

Neptunocene assumes a monoclinic crystal structure (P21/n space group) which is isomorphous to uranocene and thorocene but not to plutonocene. [5]

Synthesis and properties

Neptunocene was first synthesised in 1970 by reacting neptunium(IV) chloride (NpCl4) with dipotassium cyclooctatetraenide (K2(C8H8)) in diethyl ether or THF: [2]

NpCl4 + 2 K2(C8H8) → Np(C8H8)2 + 4 KCl

The same reaction conditions have been routinely reproduced since then for the synthesis of the compound. [4] [5]

The three actinocenes uranocene, neptunocene, and plutonocene share virtually identical chemistry: they do not react in the presence of water or dilute base, but are very air-sensitive, quickly forming oxides. [2] [3] [4] All three are only slightly soluble (up to about 10−3 M concentrations) in aromatic or chlorinated solvents such as benzene, toluene, carbon tetrachloride or chloroform. [2] [3] [5] [6]

References

  1. old.iupac.org/publications/books/rbook/Red_Book_2005.pdf
  2. 1 2 3 4 5 Karraker, David G.; Stone, John Austin.; Jones, Erwin Rudolph.; Edelstein, Norman. (1970). "Bis(cyclooctatetraenyl)neptunium(IV) and bis(cyclooctatetraenyl)plutonium(IV)" . Journal of the American Chemical Society. 92 (16): 4841–4845. doi:10.1021/ja00719a014. ISSN   0002-7863. Archived from the original on 2024-05-03. Retrieved 2021-03-22.
  3. 1 2 3 4 5 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1278–1280. ISBN   9780750633659.
  4. 1 2 3 Eisenberg, David C.; Streitwieser, Andrew; Kot, Wing K. (1990). "Electron transfer in organouranium and transuranium systems". Inorganic Chemistry. 29 (1): 10–14. doi:10.1021/ic00326a004. ISSN   0020-1669. Archived from the original on 2024-05-03. Retrieved 2021-03-22.
  5. 1 2 3 4 5 6 Ridder, D. J. A. De; Rebizant, J.; Apostolidis, C.; Kanellakopulos, B.; Dornberger, E. (1996). "Bis(cyclooctatetraenyl)neptunium(IV)" . Acta Crystallographica Section C. 52 (3): 597–600. doi:10.1107/S0108270195013047. ISSN   1600-5759. Archived from the original on 2021-06-12. Retrieved 2021-03-22.
  6. 1 2 3 Yoshida, Zenko; Johnson, Stephen G.; Kimura, Takaumi; Krsul, John R. (2006). "Neptunium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 699–812. doi:10.1007/1-4020-3598-5_6. Archived from the original (PDF) on 2018-01-17. Retrieved 2016-08-07.