OGLE-TR-123

Last updated
OGLE-TR-123
Observation data
Epoch J2000.0        Equinox J2000.0 (ICRS)
Constellation Carina
Right ascension 11h 06m 51.19s [1]
Declination −61° 11 10.1 [1]
Characteristics
Spectral type F (primary)/M (b) [2]
Apparent magnitude  (I)15.40 (system) [1]
Variable type Eclipsing binary
Astrometry
Distance 5000 ± 1000  ly
(1600 ± 400 [2]   pc)
Orbit
Period (P)1.804 [2] days
Semi-major axis (a)0.031 ± 0.002 AU [2]
Eccentricity (e)0 [2]
Inclination (i)8690° [2] °
Details [2]
OGLE-TR-123A
Mass 1.3  M
Radius 1.55  R
Temperature 6700 ± 300  K
OGLE-TR-123b
Mass 0.085  M
Radius 0.13  R
Other designations
V816  Car, 2MASS  J11065112-6111103
Database references
SIMBAD data

OGLE-TR-123 is a binary stellar system containing one of the smallest main-sequence stars whose radius has been measured. It was discovered when the Optical Gravitational Lensing Experiment (OGLE) survey observed the smaller star eclipsing the larger primary. The orbital period is approximately 1.80 days. [2]

Contents

OGLE-TR-123B

The smaller star, OGLE-TR-123B, is estimated to have a radius around 0.13 solar radii, and a mass of around 0.085 solar masses (M), or approximately 90 times Jupiter's. OGLE-TR-123b's mass is close to the lowest possible mass, estimated to be around 0.07 or 0.08 M, for a hydrogen-fusing star. [3] OGLE-TR-123b is the second star with mass less than 0.1 M whose radius has been directly measured; the first such star was the similar OGLE-TR-122b. [2]

See also

Related Research Articles

<span class="mw-page-title-main">TrES-1b</span> Hot Jupiter orbiting TrES-1 in the constellation of Lyra

TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.

<span class="mw-page-title-main">OGLE-TR-122</span> Binary star in the constellation Carina

OGLE-TR-122 is a binary stellar system containing one of the smallest main-sequence stars whose radius has been measured. It was discovered when the Optical Gravitational Lensing Experiment (OGLE) survey observed the smaller star eclipsing the larger primary. The orbital period is approximately 7.3 days. The system's primary is thought to resemble the Sun.

OGLE-TR-111 is a yellow dwarf star approximately 5,000 light-years away in the constellation of Carina. Having an apparent magnitude of about 17, this distant and dim star has not yet been cataloged. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V759 Carinae.

<span class="mw-page-title-main">OGLE-TR-10</span> Star in the constellation Sagittarius

OGLE-TR-10 is a distant, magnitude 16 star in the constellation of Sagittarius. It is located near the Galactic Center. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

OGLE-TR-132 is a distant magnitude 15.72 star in the star fields of the constellation Carina. Because of its great distance, about 4,900 light-years, and location in the crowded field it was not notable in any way. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V742 Carinae. The spectral type of the star is type F. A yellow-white, very metal-rich dwarf star, it is slightly hotter and more luminous than the Sun.

<span class="mw-page-title-main">OGLE-TR-10b</span> Hot Jupiter orbiting OGLE-TR-10

OGLE-TR-10b is an extrasolar planet orbiting the star OGLE-TR-10.

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy.

<span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

OGLE-TR-56 is a dim, distant, magnitude 17 Sun-like star located approximately 1,500 parsecs away in the constellation of Sagittarius. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

OGLE-TR-113 is a dim, distant magnitude 16 binary star in the star fields of the constellation Carina. Because of its distance of about 1170 light years, and location in a crowded field it was not notable in any way. Its apparent brightness changes when one of its planets transits, so the star has been given the variable star designation V752 Carinae. Spectral type of the star is type K dwarf star, slightly cooler and less luminous than the Sun.

OGLE-TR-182 is a dim magnitude 17 star far off in the constellation Carina at a distance of approximately 12,700 light years.

<span class="mw-page-title-main">OGLE-TR-182b</span>

OGLE-TR-182b is a transiting extrasolar planet. It is a hot Jupiter with a similar mass to Jupiter but a larger radius.

<span class="mw-page-title-main">OGLE-TR-211b</span>

OGLE-TR-211b is a transiting planet in Carina constellation. Its radius is about 36% more than Jupiter and has mass 3% more than Jupiter, which is considered an “inflated Hot Jupiter”. The planet takes 3.7 days at about the same distance as 51 Pegasi b orbits around 51 Pegasi.

<span class="mw-page-title-main">OGLE-TR-113b</span> Extrasolar planet orbiting the star OGLE-TR-113

OGLE-TR-113b is an extrasolar planet orbiting the star OGLE-TR-113.

<span class="mw-page-title-main">OGLE2-TR-L9b</span>

OGLE2-TR-L9b is an extrasolar planet discovered by three undergraduate students from Leiden University, Netherlands. The planet is about 4.5 times as massive as Jupiter and is the first discovered planet orbiting a fast-rotating hot star.

<span class="mw-page-title-main">OGLE2-TR-L9</span> Star in the constellation Carina

OGLE2-TR-L9 is a magnitude 15 star in the constellation Carina at a distance of approximately 5,142 light years.

<span class="mw-page-title-main">OGLE-TR-111b</span> Hot Jupiter orbiting OGLE-TR-111

OGLE-TR-111b is an extrasolar planet approximately 5,000 light-years away in the constellation of Carina. The planet is currently the only confirmed planet orbiting the star OGLE-TR-111.

<span class="mw-page-title-main">OGLE-TR-132b</span>

OGLE-TR-132b is an extrasolar planet orbiting the star OGLE-TR-132.

The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

<span class="mw-page-title-main">EBLM J0555-57</span> Triple star system in the constellation Pictor

EBLM J0555-57 is a triple star system approximately 670 light-years from Earth. EBLM J0555-57Ab, the smallest star in the system, orbits its primary star with a period of 7.8 days, and at the time of discovery, was the smallest known star with a mass sufficient to enable the fusion of hydrogen in its core.

References

  1. 1 2 3 The Optical Gravitational Lensing Experiment. Additional Planetary and Low-Luminosity Object Transits from the OGLE 2001 and 2002 Observational Campaigns, A. Udalski, G. Pietrzynski, M. Szymanski, M. Kubiak, K. Zebrun, I. Soszynski, O. Szewczyk, and L. Wyrzykowski, Acta Astronomica53 (June 2003), pp. 133149.
  2. 1 2 3 4 5 6 7 8 9 Radius and mass of a transiting M dwarf near the hydrogen-burning limit. OGLE-TR-123, F. Pont, C. Moutou, F. Bouchy, R. Behrend, M. Mayor, S. Udry, D. Queloz, N. Santos, and C. Melo, Astronomy and Astrophysics447, #3 (March 1, 2006), pp. 10351039. doi:10.1051/0004-6361:20053692. Bibcode:2006A&A...447.1035P.
  3. Theory of Low-Mass Stars and Substellar Objects, Gilles Chabrier and Isabelle Baraffe, Annual Review of Astronomy and Astrophysics38 (2000), pp. 337377.