Opel-RAK

Last updated
Opel-RAK
Opel RAK rocket cars bikes planes.png
Rocket-powered Opel RAK.2, RAK-Motoclub motorbike and RAK.1 aircraft replica
Country of originGermany
Date1928;96 years ago (1928)
DesignerFritz von Opel, Max Valier, Friedrich Sander, Kurt C. Volkhart, Julius Hatry
Manufacturer Opel
ApplicationFirst demonstration and popularization of rockets as practical means of propulsion for land vehicles, aviation and spaceflight
SuccessorGerman state-sponsored rocket programs, US state-sponsored rocket and space programs
StatusWorld's first rocket program
Rocket Vehicles
Rocket rail vehicle Opel RAK.3 in June 1928 world speed record event near Burgwedel in Northern Germany Bundesarchiv Bild 102-06122, Burgwedel, Raketenwagen auf Eisenbahnschienen.jpg
Rocket rail vehicle Opel RAK.3 in June 1928 world speed record event near Burgwedel in Northern Germany
Rocket installation. On the right Fritz von Opel, the left Friedrich Wilhelm Sander. Bundesarchiv Bild 102-06123, Burgwedel, Raketenwagen auf Eisenbahnschienen.jpg
Rocket installation. On the right Fritz von Opel, the left Friedrich Wilhelm Sander.

Opel-RAK were a series of rocket vehicles produced by German automobile manufacturer Fritz von Opel, [1] [2] [3] of the Opel car company, in association with others, including Max Valier, Julius Hatry, and Friedrich Wilhelm Sander. [4] [5] [6] Opel RAK is generally considered the world's first large-scale rocket program, significantly advancing rocket and aviation technology as well as instrumental in popularizing rockets as means of propulsion. In addition Opel RAK demonstrations were also highly successful as publicity stunts for the Opel car company. [7] The Lippisch Ente (meaning “duck” in German), the world's first rocket-powered glider [8] and piloted for its first flight on June 11, 1928, [9] by Fritz Stamer at Wasserkuppe, [10] was bought and operated by Opel in context of the Opel RAK program but is not formally designated an Opel RAK series number. Also a rocket-powered RAK-Motoclub motorbike, based on a conventional Opel Motoclub 500 SS and presented at the Berlin Motorshow 1928, did not receive a formal RAK number.

Contents

RAK.3 rocket train during burn Bundesarchiv Bild 102-06121, Burgwedel, Raketenwagen auf Eisenbahnschienen.jpg
RAK.3 rocket train during burn

Opel RAK set-up and objectives

The idea to build and race a rocket-powered car was suggested to von Opel by Max Valier. After the war, Valier became highly interested in rocketry. Valier, in 1927, became one of the founders of the German Verein für Raumschiffahrt, or “Spaceflight Society,” a group of later highly influential scientists who would play a major role in making rocket spaceflight a reality. Valier was more interested in publicizing rocketry than marketing Opel automobiles but came to the conclusion that building a successful rocket-powered car would achieve both goals. Von Opel confirmed his interest in realizing Valier's proposal. On behalf of von Opel, Valier eventually contacted Friedrich Wilhelm Sander, a German pyrotechnical engineer who, in 1923, had purchased H.G. Cordes, a Bremerhaven firm famous for its manufacture of black-powder rockets used mainly for harpoons, signal devices and similar devices. Opel, Sander and Valier joined forces and combined into one entity the financing, the theoretical knowledge, and the practical capability necessary for success. Moreover, von Opel, Valier, and Sander said from the start that their experiments with cars were only a prelude to grander experiments with air- and spacecraft: They agreed on the final goal of working on rocket-powered aircraft at the same time they were building their famous rocket cars, as pre-condition for the anticipated spaceflight application [1]

Rocket-powered land vehicles

Opel as heir and director of the Opel company made the respective factory and testing track resources in Rüsselsheim, Germany, available for their program. The three men began their experiments using a standard Opel automobile. Von Opel wanted to be the test driver, but Sander and Valier talked him out of it. If something happened to him, they were convinced, all resources from the Opel company backing would be stopped. A regular Opel test driver, Kurt C. Volkhart, was drafted to pilot the experimental vehicle. March 12, 1928, was selected as the date for the car's first trial run, applying only two rockets, which were to be ignited by conventional string fuses, for low-speed testing.

The group went to an Opel race car, “RAK 1.” The RAK 1 demonstrator was stripped of its engine and radiator to reduce weight. To help keep the car's wheels on the ground at expected high speeds, the group attached behind each front wheel a small, wing-like stub, set at a negative angle of attack. For propulsion, they elected to use 12 black-powder rockets, mounted in four rows of three rockets each and ignited electrically. The propellant, similar to gunpowder, burned in a subsonic deflagration wave and not in a supersonic detonation wave. A demonstration for the press on April 11, 1928, in Rüsselsheim was arranged: Opel engineer and race driver Kurt C. Volkhart developed and tested the Opel-RAK 1, a converted racing car equipped with Sander rockets instead of an internal combustion engine, was the first rocket powered automobile. [16] [17] During the April 1928 experimentations RAK 1 reached, piloted by Volkhart, the symbolic speed of 100 km/h in just eight seconds. [18]

Von Opel, Sander and Valier were satisfied by RAK 1's performance, and in particular by the attracted positive publicity for the science of rocketry, but also the Opel company. Nevertheless, it was clear to the RAK program leadership, they had no plans to commercially produce rocket cars for end customers, the aim was the development and demonstration of a rocket-powered aircraft. The group continued their land projects and built RAK 2, designed from the ground up by Volkhart as a rocket car. [17] It was far larger and more streamlined than its predecessor. The RAK 2 was powered by 24 rockets packing 264 pounds of explosives. On May 23, 1928, Fritz von Opel himself demonstrated the car, Opel RAK 2, on the Avus Speedway near Berlin. [19] [20] Prior to the start Professor Johann Schütte, Chairman of the Scientific Society of Aviation, and Fritz von Opel held prophetic speeches on the future of rocket-based aviation and spaceflight. After these introductory remarks, mechanics August Becker and Karl Treber then took the tarpaulin off the Opel RAK 2 and carefully pushed it to the start. Eventually the rockets were installed and connected to the ignition mechanism. Police cleared the AVUS track and von Opel drove the RAK 2 car to a record-setting speed of 238 km/h, successfully mastering the challenge of insufficient downforce from the wings for these velocities. The RAK 2 rockets were operational for a ride of circa three minutes, watched by 3000 spectators and world media, among them Fritz Lang, director of Metropolis and Woman in the Moon , world boxing champion Max Schmeling and many more sports and show business celebrities: [21]

… Nevertheless, few, if any, among the many thousands of onlookers who witnessed the demonstration on the AVUS track could help but feel that we are poised at the beginning of a new era.P. Friedmann, Das Motorrad No. 12/1928, June 9, 1928

The amazing thing about Opel’s rocket run on the AVUS track in Berlin is not just the daring feat itself, but its aftermath: Both the public and academics have finally seen the light and have begun to believe in the future of the rocket as an engine for new rapid transit devices.Otto Willi Gail, Illustrierte Zeitung, Leipzig, 1928

A world record for rail vehicles was reached with RAK3 on June 23, 1928, with the car attaining a top speed of 256 km/h over a 5-km stretch of straight track near Hanover. Some 20,000 spectators watched RAK 3 breaking the existing world speed record of railcars by nearly 40 km/h. The resulting international publicity after RAK2 and RAK3 demonstrations was enormous and gave the science of rocketry a major boost. A replica of the RAK 2 rocket-propelled car is on display at the Opel museum in Rüsselsheim, [22] another one at the "Deutsches Museum" in Munich.

Opel RAK rocket planes

Replica of "Raketen-Ente", an Alexander Lippisch designed sailplane, bought by Opel and equipped with two of Friedrich Sander's Opel RAK rockets; on display in Deutsches Segelflugmuseum at Wasserkuppe RRG Raketen-Ente Deutsches Segelflugmuseum 01 2009-05-31.jpg
Replica of "Raketen-Ente", an Alexander Lippisch designed sailplane, bought by Opel and equipped with two of Friedrich Sander's Opel RAK rockets; on display in Deutsches Segelflugmuseum at Wasserkuppe
Replica of Opel RAK.1, the world's first purpose-built rocket plane Opel-Sander RAK1.jpg
Replica of Opel RAK.1, the world's first purpose-built rocket plane

After testing at Wasserkuppe, in June 1928, Fritz von Opel had purchased an Alexander Lippisch-designed sailplane, the Ente, and fitted it with rockets. [23] Fritz Stamer was the pilot during the OPEL RAK experimentations with Lippisch's design. Opel did not get the chance to fly it, however, as the aircraft was destroyed by an engine explosion on its second test flight. With a wingspan of just under 40 feet, and a length of some 14 feet, the Ente featured a canoe-like fuselage, canard surfaces, and rudders mounted outboard on a straight rectangular wing. Each of the aircraft's two 44-pound-thrust rocket engines were tightly packed with about eight pounds of black powder. Designed to fire in sequence, the rockets were ignited electrically by the pilot. An automatic counterweight system was set to adjust the aircraft's center of gravity as the rocket fuel was consumed. An elastic launching rope was used to catapult the Ente into the air. After one false start, the aircraft took off and flew a 1,500 metre (4,900 ft) circuit of the Wasserkuppe's landing strip. On the second flight, the team decided to try firing both rockets together for increased thrust over a shorter period. Something went wrong, however, and rather than burning properly, one of the rockets exploded, punching holes in both wings and setting the aircraft alight. Stamer was nevertheless able to bring it down from a height of around 20 metres (65 ft) before hastily abandoning the Ente, which was burned beyond any hope of salvage.

Despite the loss of the first rocket plane, von Opel immediately contracted with Julius Hatry for a specialized rocket aircraft. Hatry's design for Opel was rather more elegant than the Ente. [24] With a wingspan of 36 feet and length of 16 feet, the new aircraft Opel RAK.1 had a typical sailplane wing, under which a pod was suspended to accommodate the pilot and sixteen of Sander's solid rocket engines each with 50 pounds of thrust. The tailplane was mounted on booms behind the wing and high out of the way of the rocket exhaust.

Opel RAK.1, world's first public flight of a rocket-powered aircraft on September 30, 1929 Opel RAK1 2.jpg
Opel RAK.1, world's first public flight of a rocket-powered aircraft on September 30, 1929

The first public flight came on Sept. 30, 1929. Before a large crowd assembled outside of Frankfurt, the intrepid von Opel made a successful flight of almost 3.5 km in 75 seconds, reaching an estimated top speed of around 150 km/h. RAK.1 made a hard landing, but it had made an emphatic point about rocket aviation and popularized rockets as means of propulsion immensely, causing a so-called global "rocket rumble". The aircraft is sometimes also referred to as the Opel-Hatry RAK.1 or Opel-Sander RAK.1 in acknowledgment of its builder or the supplier of its engines respectively. In still other references it is called the RAK.3 to distinguish it from Opel's previous RAK.1 and RAK.2 rocket cars. As it happened, all three names, Opel, Sander, and Hatry were painted on the aircraft (with Opel's most prominent), as was the RAK.1 designation.

The Mannheim Museum of Technology, Technoseum, has a replica of RAK.1 as the world's first dedicated rocket-plane on display. The original aircraft designer of the Opel RAK.1, Julius Hatry, personally supervised the construction of the aircraft replica.

Liquid-fuel rocket development, test launches and a planned flight across the English channel

According to Frank H. Winter, curator at National Air and Space Museum in Washington, DC, the Opel group was also working on liquid-fuel rockets (SPACEFLIGHT, Vol. 21,2, Feb. 1979): [25] In a cabled exclusive to The New York Times on 30 September 1929, von Opel is quoted as saying: "Sander and I now want to transfer the liquid rocket from the laboratory to practical use. With the liquid rocket I hope to be the first man to thus fly across the English Channel. I will not rest until I have accomplished that." At a speech on the donation of a RAK 2 replica to the Deutsches Museum, von Opel mentioned also Opel engineer Josef Schaberger as a key collaborator. [26] "He belonged," von Opel said, "with the same enthusiasm as Sander to our small secret group, one of the tasks of which was to hide all the preparations from my father, because his paternal apprehensions led him to believe that I was cut out for something better than being a rocket researchist. Schaberger supervised all the details involved in construction and assembly (of rocket cars), and every time I sat behind the wheel with a few hundred pounds of explosives in my rear, and made the first contact, I did so with a feeling of total security [...] As early as 1928, Mr. Schaberger and I developed a liquid rocket, which was definitely the first permanently operating rocket in which the explosive was injected into the combustion chamber and simultaneously cooled using pumps. [...] We used benzol as the fuel," von Opel continued, "and nitrogen tetroxide as the oxidizer. This rocket was installed in a Mueller-Griessheim aircraft and developed a thrust of 70 kg (154 lb.)." By May 1929, the engine produced a thrust of 200 kg (440 lb.) "for longer than fifteen minutes and in July 1929, the Opel RAK collaborators were able to attain powered phases of more than thirty minutes for thrusts of 300 kg (660-lb.) at Opel's works in Rüsselsheim," according to Max Valier's account.

Friedrich Sander, Opel RAK technician August Becker and Opel employee Karl Treber (from right to left) in front of Opel liquid-fuel rocket-plane prototype while test operation Opel RAK liquid-fuel rocket plane Friedrich Sander.jpg
Friedrich Sander, Opel RAK technician August Becker and Opel employee Karl Treber (from right to left) in front of Opel liquid-fuel rocket-plane prototype while test operation

Max Valier also reports the launch of two experimental liquid-fuel rockets by Sander on April 10 and 12, 1929. In the preface of his book “Raketenfahrt” [27] he describes the size of the rockets as of 21 cm in diameter and with a length of 74 cm, weighing 7 kg empty and 16 kg with fuel. The maximum thrust was 45 to 50 kp, with a total burning time of 132 seconds. These properties indicate a gas pressure pumping. The first missile rose so quickly that Sander lost sight of it. Two days later, a second unit was ready to go, Sander tied a 4,000-meter-long rope to the rocket. After 2000 m of rope had been unwound, the line broke and this rocket also disappeared in the area, probably near the Opel proving ground and racetrack in Rüsselsheim, the "Rennbahn". The main purpose of these tests was to develop the propulsion system for the aircraft for crossing the English channel. Therefore, the flights of these two (compared to the airplane) small rockets were not published. The combustion tests with the aircraft rocket engine proved successful. Unfortunately the plane was destroyed during a nightly transport on a truck on the Opel factory grounds, as the senior boss Wilhelm von Opel felt disturbed by the engine noise and wanted to stop this new “dangerous madness” of his son. [28]

Opel RAK break-up and legacy

Shortly after these activities and the September 1929 flight of RAK.1, the Opel rocket experiments were brought to an end by the Great Depression and also the Opel company focused its engineering capacities on vehicle development. Von Opel left Germany before 1930, first to the US and eventually to France and Switzerland where he died. He lived long enough to see the fulfillment of his dreams with the successful Apollo missions which can be traced back to Opel RAK. His sister Elinor von Opel had to flee Germany in 1935 with her sons, Ernst Wilhelm Sachs von Opel and Gunter Sachs von Opel, due to a legal battle on her divorce, particularly bitter about the custody of both sons, and because of her public aversion to Nazi leadership, friends of her former husband Willy Sachs. [29] Elinor's German assets were blocked and confiscated by the German Reich government.

Valier continued the rocket development after the Opel RAK break-up on his own. In collaboration with Heylandt-Werke, he also was focusing his efforts on liquid-fuelled rockets. Their first successful test firing with liquid fuel (five minutes) occurred in the Heylandt plant on 25 January 1930. Valier was killed less than a month later when an alcohol-fuelled rocket exploded on his test bench in Berlin. He is considered the first fatality of the dawning space age. His protégé Arthur Rudolph went on to develop an improved and safer version of Valier's engine.

Sander was eventually engaged in the 1930s in German military projects under General Walter R. Dornberger but was imprisoned for treason by the Nazis and forced to sell his business, he died in custody 1938.

Hatry tried to continue the work on his aircraft developments, but was sidelined by the Nazis since he had a Jewish grandfather. He had to start anew and became a screenwriter and documentary filmmaker. Hatry was drawn into theater and fiction, finally his mother convinced him after his father's death to take over the family's real-estate business. [30]

The impact of Opel RAK was both immediate and long-lasting on later spaceflight pioneers. Opel, Sander, Valier and Hatry had engaged in a program that led directly to use of jet-assisted takeoff for heavily laden aircraft. The German Reich was first to test the approach in August 1929 when a battery of solid rocket propellants supported a Junkers Ju-33 seaplane to get airborne. The Opel RAK experiments had a tremendous influence on Lippisch, whose experience with the rocket-powered "Ente" eventually paved the way to the Messerschmitt Me-163, the first operational rocket fighter craft. The Opel RAK experiments excited also the interest of the German military, which provided funding for further development of rockets as a replacement for artillery. This led to an array of military applications, among them Germany's V-2 terror weapon, the world's first ballistic missile. After World War II, these German rocket and missile scientists and engineers would have an immense impact on missile and space programs by the United States of America. Walter J. Boyne, Director of the National Air and Space Museum in Washington, DC, concluded "Working together, von Opel, Valier, and Sander had thrown a big rock of publicity into the mill pond of science. The ripples have not yet ceased to spread." [1]

Film footage

The 1937 German film Weltraum Schiff I Startet Eine Technische Fantasie has short clips of various RAK vehicles: 11 seconds at 436 feet (approximately 04:47) igniters being wired to the Rak.2 car; 2 seconds at 447 feet (approximately 04:58) Max Valier seated in a RAK.2 car labeled "RÜCKSTOSS VERSUCHS WAGEN"; 2 seconds at 451 feet (approximately 05:00) Fritz von Opel seated in a RAK.2 car; 11 seconds at 460 feet (approximately 05:06) Fritz Von Opel drives the RAK.2 car on 1928 May 23 at the Avus Track in Berlin; 2 seconds at 472 feet (05:14) Sander-Opel RAK.3 rocket car on 1928 June 23 running on railway tracks; 19 seconds at 475 feet (05:16 to 05:35) Opel-Sander RAK.1 rocket glider in 1928 September, preparation and launch; 6 seconds at 536 feet (05:57 to 06:03) Max Valier sitting and talking in a RAK.6 car. [31]

Related Research Articles

<span class="mw-page-title-main">Messerschmitt Me 163 Komet</span> German rocket-powered interceptor

The Messerschmitt Me 163 Komet is a rocket-powered interceptor aircraft primarily designed and produced by the German aircraft manufacturer Messerschmitt. It is the only operational rocket-powered fighter aircraft in history as well as the first piloted aircraft of any type to exceed 1,000 kilometres per hour (620 mph) in level flight.

<span class="mw-page-title-main">Opel</span> German automotive brand, subsidiary of Stellantis

Opel Automobile GmbH, usually shortened to Opel, is a German automobile manufacturer which has been a subsidiary of Stellantis since 16 January 2021. It was owned by the American automaker General Motors from 1929 until 2017 and the PSA Group prior to its merger with Fiat Chrysler Automobiles to form Stellantis in 2021. Most of the Opel lineup is marketed under the Vauxhall Motors brand in the United Kingdom since the 1980s. Some Opel vehicles were badge-engineered in Australia under the Holden brand until 2020, in North America and China under the Buick, Saturn, and Cadillac brands, and in South America under the Chevrolet brand.

<span class="mw-page-title-main">Hermann Oberth</span> Austro-Hungarian-born German physicist and rocketry pioneer (1894–1989)

Hermann Julius Oberth was an Austro-Hungarian-born German physicist and rocket pioneer of Transylvanian Saxon descent. He is considered one of the founding fathers of rocketry and astronautics, along with Robert Esnault-Pelterie, Konstantin Tsiolkovsky, Robert H. Goddard and Herman Potočnik. Oberth supported Nazi Germany's war effort and received the War Merit Cross in 1943.

<span class="mw-page-title-main">Jet aircraft</span> Aircraft class powered by jet propulsion engines

A jet aircraft is an aircraft propelled by one or more jet engines.

<span class="mw-page-title-main">Alexander Lippisch</span> German aeronautical engineer, a pioneer of aerodynamics

Alexander Martin Lippisch was a German aeronautical engineer, a pioneer of aerodynamics who made important contributions to the understanding of tailless aircraft, delta wings and the ground effect, and also worked in the U.S. Within the Opel-RAK program, he was the designer of the world's first rocket-powered glider.

<span class="mw-page-title-main">Heinkel He 176</span> Experimental rocket plane

The Heinkel He 176 was a German experimental rocket-powered aircraft. It was the world's first aircraft to be propelled solely by a liquid-fueled rocket, making its first powered flight on 20 June 1939 with Erich Warsitz at the controls.

<span class="mw-page-title-main">Lippisch Ente</span> Type of aircraft

The Ente was the world's first full-sized rocket-powered aircraft. It was designed by Alexander Lippisch as a sailplane and first flown under power on June 11, 1928, piloted by Fritz Stamer as part of the Opel-RAK rocket program led by Fritz von Opel and Max Valier.

<span class="mw-page-title-main">Opel RAK.1</span>

The Opel RAK.1 was the world's first purpose-built rocket-powered aircraft. It was designed and built by Julius Hatry under commission from Fritz von Opel, who flew it on September 30, 1929 in front of a large crowd at Rebstock airport near Frankfurt am Main. The RAK.1 plane was part of a series of rocket-powered vehicles that were developed and demonstrated within the Opel RAK program, the world's first large-scale rocket program.

<span class="mw-page-title-main">Fritz von Opel</span>

Fritz Adam Hermann von Opel, known as Fritz Adam Hermann Opel until his father was ennobled in 1917, was the only son of Wilhelm von Opel and a grandson of Adam Opel, founder of the Opel company. He is remembered mostly for his Opel RAK demonstrations of the world's first manned rocket-powered ground and air vehicles that earned him the nickname "Rocket Fritz" and which were also highly effective as publicity stunts for his family's automotive business.

<span class="mw-page-title-main">Julius Hatry</span> German aircraft designer and builder

Julius Hatry was a German aircraft designer and builder. He is remembered for his contributions to sailplane development in the early twentieth century and for building the world's first purpose-built rocket plane, the Opel RAK.1.

<span class="mw-page-title-main">Friedrich Wilhelm Sander</span>

Friedrich Wilhelm Sander was a German pyrotechnics and rocket technology engineer as well as manufacturer remembered for his contributions to rocket-powered flight as key protagonist of the Opel-RAK program.

<span class="mw-page-title-main">Max Valier</span> Austrian rocketry pioneer

Max Valier was an Austrian rocketry pioneer. He was a leading figure in the world's first large-scale rocket program, Opel-RAK, and helped found the German Verein für Raumschiffahrt that would bring together many of the minds that would later make spaceflight a reality in the 20th century.

<span class="mw-page-title-main">Verein für Raumschiffahrt</span> German amateur rocket association prior to World War II

The Verein für Raumschiffahrt was a German amateur rocket association prior to World War II that included members outside Germany. The first successful VfR test firing with liquid fuel was conducted by Max Valier at the Heylandt Works on January 25, 1930; and additional rocket experiments were conducted at a farm near Bernstadt, Saxony.

<span class="mw-page-title-main">Johannes Winkler</span> German aerospace engineer

Johannes Winkler was a German rocket pioneer who co-founded with Max Valier of Opel RAK the first German rocket society "Verein für Raumschiffahrt" and launched, after Friedrich Wilhelm Sander's successful Opel RAK liquid-rocket launches in 1929, one of the first successful liquid-fuelled rocket in Europe.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

<span class="mw-page-title-main">Rocket-powered aircraft</span> Aircraft which uses a rocket engine for propulsion

A rocket-powered aircraft or rocket plane is an aircraft that uses a rocket engine for propulsion, sometimes in addition to airbreathing jet engines. Rocket planes can achieve much higher speeds than similarly sized jet aircraft, but typically for at most a few minutes of powered operation, followed by a gliding flight. Unhindered by the need for oxygen from the atmosphere, they are suitable for very high-altitude flight. They are also capable of delivering much higher acceleration and shorter takeoffs. Many rocket aircraft may be drop launched from transport planes, as take-off from ground may leave them with insufficient time to reach high altitudes.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

<span class="mw-page-title-main">Rocket car</span> Land vehicle propelled by a rocket engine

A rocket car is a land vehicle propelled by a rocket engine. A rocket dragster is a rocket car used for competing in drag racing, and this type holds the unofficial world record for the 1/4 mile.

<span class="mw-page-title-main">Technoseum</span> Technology museum in Mannheim, Germany

The Technoseum is a technology museum in Mannheim, Baden-Württemberg, Germany, with displays covering the industrialisation of the south-western regions of the country.

<span class="mw-page-title-main">History of rockets</span> First rockets

The first rockets were used as propulsion systems for arrows, and may have appeared as early as the 10th century in Song dynasty China. However more solid documentary evidence does not appear until the 13th century. The technology probably spread across Eurasia in the wake of the Mongol invasions of the mid-13th century. Usage of rockets as weapons before modern rocketry is attested to in China, Korea, India, and Europe. One of the first recorded rocket launchers is the "wasp nest" fire arrow launcher produced by the Ming dynasty in 1380. In Europe rockets were also used in the same year at the Battle of Chioggia. The Joseon kingdom of Korea used a type of mobile multiple rocket launcher known as the "Munjong Hwacha" by 1451.

References

  1. 1 2 3 https://www.airforcemag.com/article/0904rocket/ article by Walter J. Boyne in Air Force Magazine, September 1, 2004
  2. Keith Lovegrove (2004). Railroad. Laurence King Publishing. pp. 59–. ISBN   978-1-85669-407-0.
  3. "Car maker Opel's 1929 publicity stunt to fly world's first rocket-powered aircraft". www.key.aero. 2022-04-20. Retrieved 2024-02-12.
  4. "Das RAK-Protokoll", a 25 minutes documentary on the Opel RAK program https://opel-tv-footage.com/v/The%20RAK%20Protocoll?p=4&c=86&l=1
  5. "Der erste Jet der Welt war ein Segelflieger". blue News (in German). Retrieved 2024-02-10.
  6. Magazine, Smithsonian; Winter, Frank H. "A Century Before Elon Musk, There Was Fritz von Opel". Smithsonian Magazine. Retrieved 2024-02-12.
  7. 1 2 Darling, David. "Opel-RAK". www.daviddarling.info.
  8. "95 years ago: First Human Rocket-Powered Aircraft Flight - NASA". 2023-06-12. Retrieved 2024-02-10.
  9. Amy Shira Teitel (22 October 2015). Breaking the Chains of Gravity: The Story of Spaceflight before NASA. Bloomsbury Publishing. pp. 12–. ISBN   978-1-4729-1119-3.
  10. David Masters (1982). German Jet Genesis. Jane's. ISBN   9780710601865.
  11. 1 2 "OPEL ROCKET VEHICLES".
  12. "Lux's type collection - High Speed Trains - record runs". www.boris-lux.de.
  13. "Historie". August 14, 2007. Archived from the original on August 14, 2007.
  14. "Valier". January 15, 2006. Archived from the original on January 15, 2006.
  15. 1 2 "Opel". www.astronautix.com. Archived from the original on 3 March 2016.
  16. The V2 and the German, Russian and American Rocket Program. German Canadian Museum of. pp. 7–. ISBN   978-1-894643-05-4.
  17. 1 2 Graf Wolff Metternich, Michael (1997). Deutsche Raketenfahrzeuge auf Strasse, Schiene und Eis (in German). Lorsch/Württemberg, Germany: Verlag Hermann E. Sieger GmbH. pp. 30–48.
  18. Gail, Otto Willi (1928). Mit Raketenkraft ins Weltenall (in German). p. 72.
  19. Willy Ley (1961). Rockets, missiles, and space travel. Viking Press.
  20. Cole Coonce (2002). Infinity Over Zero: Meditations on Maximum Velocity. Kerosene Bomb Publishing. pp. 45–. ISBN   978-0-9719977-0-7.
  21. "Opel Sounds in the Era of Rockets". 23 May 2018.
  22. Alamy Stock photo of the RAK 2 at the Opel museum
  23. "Car maker Opel's 1929 publicity stunt to fly world's first rocket-powered aircraft". www.key.aero. 2022-04-20. Retrieved 2024-02-12.
  24. "The Rocket Men". Air & Space Forces Magazine. Retrieved 2024-02-12.
  25. Frank H. Winter, The Von Opel Flights, SPACEFLIGHT, Vol. 21, February 2, 1979
  26. Von Opel, Fritz (3 May 1968). "Geschichte der Raketentechnik - Sinn und Grenzen aller Technik" (PDF). Opel Post. 5: 4 via Opel company.
  27. Valier, Max (2019-06-04), "Raketenfahrt", (in German), Oldenbourg Wissenschaftsverlag, pp. 209–232, doi:10.1515/9783486761955-006, ISBN   978-3-486-76195-5 , retrieved 2024-02-12{{citation}}: Missing or empty |title= (help)
  28. Arbeitsgemeinschaft Daedalus / Raketenflugplatz Berlin http://www.raketenflugplatz-berlin.de/sander.htm
  29. "Diese Putzfrau kommt mir nicht ins Haus". FAZ.NET (in German). 2005-10-19. ISSN   0174-4909 . Retrieved 2024-02-12.
  30. "Hatry, Julius (1906-2000) Flugzeugingenieur, Raketenpionier, Filmemacher und Schriftsteller". www.kipnis.de. Retrieved 2024-02-12.
  31. Kutter, Anton (1937). "Space Ship Takeoff, a Technical Fantasy (1928)". Bavaria Film Kunst. Retrieved 9 January 2011.