Open collector

Last updated

Open collector, open drain, open emitter, and open source refer to integrated circuit (IC) output pin configurations that process the IC's internal function through a transistor with an exposed terminal that is internally unconnected (i.e. "open"). One of the IC's internal high or low voltage rails typically connects to another terminal of that transistor. When the transistor is off, the output is internally disconnected from any internal power rail, a state called "high-impedance" (Hi-Z). Open outputs configurations thus differ from push–pull outputs, which use a pair of transistors to output a specific voltage or current.

Contents

These open outputs configurations are often used for digital applications when the transistor acts as a switch, to allow for logic-level conversion, wired-logic connections, and line sharing. External pull-up/down resistors are typically required to set the output during the Hi-Z state to a specific voltage. Analog applications include analog weighting, summing, limiting, and digital-to-analog converters.

The NPN BJT (n-type bipolar junction transistor) and nMOS (n-type metal oxide semiconductor field effect transistor) have greater conductance than their PNP and pMOS relatives, so may be more commonly used for these outputs. Open outputs using PNP and pMOS transistors will use the opposite internal voltage rail used by NPN and nMOS transistors.

Open collector

NPN open collector output schematic. A signal from an IC's internal function is applied as the base input for a NPN BJT transistor, which controls the transistor's switching to the IC's ground. The external output is the transistor's collector. OpencollectorV3.png
NPN open collector output schematic. A signal from an IC's internal function is applied as the base input for a NPN BJT transistor, which controls the transistor's switching to the IC's ground. The external output is the transistor's collector.

An open collector output processes an IC's output through the base of an internal bipolar junction transistor (BJT), whose collector is exposed as the external output pin.

For NPN open collector outputs, the emitter of the NPN transistor is internally connected to ground, [1] so the NPN open collector internally forms either a short-circuit (technically low impedance or "low-Z") connection to the low voltage (which could be ground) when the transistor is switched on, or an open-circuit (technically high impedance or "hi-Z") when the transistor is off. The output is usually connected to an external pull-up resistor, which pulls the output voltage to the resistor's supply voltage when the transistor is off.

For PNP open collector outputs, the emitter of the PNP transistor is internally connected to the positive voltage rail, so the collector outputs a high voltage when the transistor is on or is hi-Z when off. This is sometimes called "open collector, drives high".

Open emitter

Open emitter output exposes the emitter as the output. [2]

For an NPN open emitter output, the collector is connected to the positive voltage rail, so the emitter outputs a high voltage when the transistor is on and is hi-Z when off.

For a PNP open emitter output, the collector is connected to the low voltage supply, so the emitter outputs a low voltage when the transistor is on and is hi-Z when off.

Open drain

nMOS open drain output is pulled Low when the nMOS is conducting. In the nonconducting hi-Z state, an external resistor pulls the output High so the output's voltage does not float. Animated open drain output.gif
nMOS open drain output is pulled Low when the nMOS is conducting. In the nonconducting hi-Z state, an external resistor pulls the output High so the output's voltage does not float.

Open drain output uses MOS transistor (MOSFET) instead of BJTs, and expose the MOSFET's drain as output. [1] :488ff

An nMOS open drain output connects to ground when a high voltage is applied to the MOSFET's gate, or presents a high impedance when a low voltage is applied to the gate. The voltage in this high impedance state would be floating (undefined) because the MOSFET is not conducting, which is why nMOS open drain outputs require a pull-up resistor connected to a positive voltage rail for producing a high output voltage.

Microelectronic devices using nMOS open drain output may provide a 'weak' (high-resistance, often on the order of 100 kΩ) internal pull-up resistor to connect the terminal in question to the positive power supply of the device so their output voltage doesn't float. Such weak pullups reduce power consumption due to their lower ohmic heating and possibly avoid the need for an external pull-up. External pullups may be 'stronger' (lower resistance, perhaps 3 kΩ) to reduce signal rise times (like with I²C) or to minimize noise (like on system RESET inputs).

Modern microcontrollers may allow programming particular output pins to use open drain instead of push–pull output, the strength of the internal pull-up, and allow disabling internal pullups when not desired. [3]

For pMOS open drain, the output instead connects to the positive power rail when the transistor is on, and is hi-Z when off. This is sometimes called "open drain, drives high".

Open source

Open source output exposes the MOSFET's source as the output.

For a nMOS open source output, the drain is internally connected to the positive voltage rail, so the source outputs a high voltage when the transistor is on and is hi-Z when off.

For a pMOS open source output, the drain is internally connected to the low voltage rail, so the output instead connects to the low voltage rail when the transistor is on, or is hi-Z when off.

Summary of configurations

Summary of different open configurations
transistorexposed terminalinternal voltage supply connection
NPNopen collectorLOW voltage connected to emitter
open emitterHIGH voltage connected to collector
nMOSopen drainLOW voltage connected to source
open sourceHIGH voltage connected to drain
PNPopen collectorHIGH voltage connected to emitter
open emitterLOW voltage connected to collector
pMOSopen drainHIGH voltage connected to source
open sourceLOW voltage connected to drain

Configurations that internally connect to a high voltage are source drivers. [4] Configurations that internally connect to a low voltage are sink drivers. [5]

Schematic symbol

Schematic symbol for a buffer with open-collector output. Open-collector or open-drain buffer.svg
Schematic symbol for a buffer with open-collector output.

Open output is indicated on schematics with these IEEE symbols: [7]

⎐ - NPN open collector or similar output that can supply a relatively low-impedance low voltage when not turned off. Requires external pullup. Capable of positive-logic wired-AND connection.
⎒ - variant with internal pull-up resistor to provide a high voltage when off.
⎏ - NPN open emitter or similar output that can supply a relatively low-impedance high voltage when not turned off. Requires external pulldown. Capable of positive-logic wired-OR connection.
⎑ - variant with an internal pull-down resistor to provide a low voltage when off.

Applications

Note: this section primarily deals with npn open collectors, however nMOS open drain generally applies as well.

Logic-level conversion

Because the pull-up resistor is external and does not need to be connected to the chip supply voltage, a lower or higher voltage than the chip supply voltage can be used instead (provided it does not exceed the absolute maximum rating of the chip's output). Open outputs are therefore sometimes used to interface different families of devices that have different operating voltage levels. The open collector transistor can be rated to withstand a higher voltage than the chip supply voltage. This technique is commonly used by logic circuits operating at 5 V or lower to drive higher voltage devices such as electric motors, LEDs in series, [8] 12 V relays, 50 V vacuum fluorescent displays, or Nixie tubes requiring more than 100 V.

Wired logic

Four inputs are connected to open-collector buffers. If all inputs are high, each buffer will be in a high-impedance state and the pull-up resistor will pull the output high. But if any input is low, the output will be pulled low by the buffer for that input. This corresponds to wired AND in active-high logic, or to wired OR in active-low logic, and allows multiple inputs to share the same output wire. Open-collector buffers sharing output wire.svg
Four inputs are connected to open-collector buffers. If all inputs are high, each buffer will be in a high-impedance state and the pull-up resistor will pull the output high. But if any input is low, the output will be pulled low by the buffer for that input. This corresponds to wired AND in active-high logic, or to wired OR in active-low logic, and allows multiple inputs to share the same output wire.

Another advantage is that more than one open collector output can be connected to a single line. If all open collector outputs attached to a line are off (i.e. in the high-impedance state), the pull-up resistor will be the only device setting the line's voltage, and will pull the line voltage high. But if one or more open collector outputs attached to the line are on (i.e. conducting to ground), since any one of them are strong enough to overcome the pull-up resistor's limited ability to hold the voltage high, the line voltage will instead be pulled low. This wired logic connection has several uses.

By tying the output of several open collectors together and connecting to a pull-up resistor, the common line becomes a wired AND in active high logic. The output will be high (true) only when all gates are in the high impedance state and will be low (false) otherwise, like Boolean AND. When treated as active-low logic, this behaves like Boolean OR, since the output is low (true) when any input is low. See: Transistor–transistor logic § Open collector wired logic.

Line sharing

Line sharing is used for interrupts and buses (such as I²C or 1-Wire). Open collector output enables one active device to drive the shared line without interference from the other inactive devices. If push–pull output was mistakenly used instead, the active device attempting to set the line voltage low would be in competition with the other devices attempting to set the line voltage high, which would result in unpredictable output and heat.

SCSI-1 devices use open collector for electrical signaling. [9] SCSI-2 and SCSI-3 may use EIA-485.

Analog

Open collector outputs can also be useful for analog weighting, summing, limiting, digital-to-analog converters, etc., but such applications are not discussed here.

Disadvantages

One problem such open-collector and similar devices with a pull-up resistor is the resistor consumes power constantly while the output is low. Higher operating speeds require lower resistor values for faster pull-up, which consume even more power.

Also when driving a load, current through the pull-up resistor reduces the output high voltage by a voltage drop equal to the current times resistance, according to Ohm's law.

Pseudo open drain (POD)

Pseudo Open Drain usage in DDR interfaces. Pseudo Open Drain description.png
Pseudo Open Drain usage in DDR interfaces.

Pseudo open drain (POD) drivers have a strong pull-down strength but a weaker pull-up strength. The purpose is to reduce the overall power demand compared to using both a strong pull-up and a strong pull-down. [10] A pure open drain driver, by comparison, has no pull-up strength except for leakage current: all the pull-up action is on the external termination resistor. This is why the term "pseudo" has to be used here: there is some pull-up on the driver side when output is at high state, the remaining pull-up strength is provided by parallel-terminating the receiver at the far end to the HIGH voltage, often using a switchable, on-die terminator instead of a separate resistor.

JEDEC standardized the terms POD15, [11] POD125, [12] POD135, [13] and POD12 [14] for 1.5V, 1.25V, 1.35V, and 1.2V interface supply voltages, respectively.

DDR memory

DDR4 memory uses POD12 drivers but with the same driver strength (34 Ω/48 Ω) for pull-down (RonPd) and pull-up (RonPu). The term POD in DDR4 referring only for termination type that is only parallel pull-up without the pull-down termination at the far end.[ clarification needed ] The reference point (VREF) for the input is not half-supply as was in DDR3 and may be higher. A comparison [15] of both DDR3 and DDR4 termination schemes in terms of skew, eye aperture and power consumption was published in late 2011.[ relevant? ]

See also

Related Research Articles

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Comparator</span> Device that compares two voltages or currents

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).

N-type metal–oxide–semiconductor logic uses n-type (-) MOSFETs to implement logic gates and other digital circuits. These nMOS transistors operate by creating an inversion layer in a p-type transistor body. This inversion layer, called the n-channel, can conduct electrons between n-type "source" and "drain" terminals. The n-channel is created by applying voltage to the third terminal, called the gate. Like other MOSFETs, nMOS transistors have four modes of operation: cut-off, triode, saturation, and velocity saturation.

In electronics, a multi-transistor configuration called the Darlington configuration is a circuit consisting of two bipolar transistors with the emitter of one transistor connected to the base of the other, such that the current amplified by the first transistor is amplified further by the second one. The collectors of both transistors are connected together. This configuration has a much higher current gain than each transistor taken separately. It acts like and is often packaged as a single transistor. It was invented in 1953 by Sidney Darlington.

<span class="mw-page-title-main">Emitter-coupled logic</span>

In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated region of operation and its slow turn-off behavior. As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL), current-mode logic (CML) or current-switch emitter-follower (CSEF) logic.

<span class="mw-page-title-main">Differential amplifier</span> Electrical circuit component which amplifies the difference of two analog signals

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs and and one output , in which the output is ideally proportional to the difference between the two voltages:

<span class="mw-page-title-main">Buffer amplifier</span> Electronic amplifier, a circuit component

In electronics, a buffer amplifier is a unity gain amplifier that copies a signal from one circuit to another while transforming its electrical impedance to provide a more ideal source. This "buffers" the signal source in the first circuit against being affected by currents from the electrical load of the second circuit and may simply be called a buffer or follower when context is clear.

<span class="mw-page-title-main">Current source</span> Electronic circuit which delivers or absorbs electric current regardless of voltage

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.

<span class="mw-page-title-main">Push–pull output</span> Type of electronic circuit

A push–pull amplifier is a type of electronic circuit that uses a pair of active devices that alternately supply current to, or absorb current from, a connected load. This kind of amplifier can enhance both the load capacity and switching speed.

<span class="mw-page-title-main">Pull-up resistor</span> Electrical component to ensure a known state for a signal

In electronic logic circuits, a pull-up resistor (PU) or pull-down resistor (PD) is a resistor used to ensure a known state for a signal. It is typically used in combination with components such as switches and transistors, which physically interrupt the connection of subsequent components to ground or to VCC. Closing the switch creates a direct connection to ground or VCC, but when the switch is open, the rest of the circuit would be left floating.

<span class="mw-page-title-main">Current-mode logic</span> Differential digital logic family

Current mode logic (CML), or source-coupled logic (SCL), is a digital design style used both for logic gates and for board-level digital signaling of digital data.

<span class="mw-page-title-main">Ground bounce</span>

In electronic engineering, ground bounce is a phenomenon associated with transistor switching where the gate voltage can appear to be less than the local ground potential, causing the unstable operation of a logic gate.

Diode logic constructs AND and OR logic gates with diodes and resistors.

<span class="mw-page-title-main">Integrated injection logic</span> Two-BJT transistor digital logic

Integrated injection logic (IIL, I2L, or I2L) is a class of digital circuits built with multiple collector bipolar junction transistors (BJT). When introduced it had speed comparable to TTL yet was almost as low power as CMOS, making it ideal for use in VLSI (and larger) integrated circuits. The gates can be made smaller with this logic family than with CMOS because complementary transistors are not needed. Although the logic voltage levels are very close (High: 0.7V, Low: 0.2V), I2L has high noise immunity because it operates by current instead of voltage. I2L was developed in 1971 by Siegfried K. Wiedmann and Horst H. Berger who originally called it merged-transistor logic (MTL). A disadvantage of this logic family is that the gates draw power when not switching unlike with CMOS.

A Wilson current mirror is a three-terminal circuit that accepts an input current at the input terminal and provides a "mirrored" current source or sink output at the output terminal. The mirrored current is a precise copy of the input current. It may be used as a Wilson current source by applying a constant bias current to the input branch as in Fig. 2. The circuit is named after George R. Wilson, an integrated circuit design engineer who worked for Tektronix. Wilson devised this configuration in 1967 when he and Barrie Gilbert challenged each other to find an improved current mirror overnight that would use only three transistors. Wilson won the challenge.

In electronics, high impedance means that a point in a circuit allows a relatively small amount of current through, per unit of applied voltage at that point. High impedance circuits are low current and potentially high voltage, whereas low impedance circuits are the opposite. Numerical definitions of "high impedance" vary by application.

In the field of electronics, a technique where part of the output of a system is used at startup can be described as bootstrapping.

<span class="mw-page-title-main">PMOS logic</span> Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

A wired logic connection is a logic gate that implements boolean algebra (logic) using only passive components such as diodes and resistors. A wired logic connection can create an AND or an OR gate. Limitations include the inability to create a NOT gate, the lack of amplification to provide level restoration, and its constant ohmic heating for most logic which indirectly limits density of components and speed.

References

  1. 1 2 Paul Horowitz; Winfield Hill (1989). The Art of Electronics (2nd ed.). Cambridge University Press.
  2. "open-emitter output | JEDEC". www.jedec.org. Retrieved 2023-06-27.
  3. Kotzian, Jiri (2015). "Influence of Pin Setting on System Function and Performance" (PDF). NXP . Archived (PDF) from the original on 2022-10-23. Retrieved 2022-12-27.
  4. "source driver, (current-) | JEDEC". JEDEC . Archived from the original on 2023-09-05. Retrieved 2023-09-06.
  5. "sink driver, (current-) | JEDEC". JEDEC . Archived from the original on 2023-09-05. Retrieved 2023-09-06.
  6. "SNx407 and SNx417 Hex Buffers and Drivers With Open-Collector" (PDF). Texas Instruments . 1983. Retrieved 2023-01-18.
  7. "Overview of IEEE Standard 91-1984 Explanation of Logic Symbols" (PDF). Texas Instruments. 1996. Retrieved February 12, 2020.
  8. Oskay, Windell (2012-02-29). "Basics: Open Collector Outputs". Evil Mad Scientist. Archived from the original on 2022-12-20. Retrieved 2023-01-15.
  9. "Overview of SCSI Standards & Cables". Archived from the original on 2008-12-10. 081214 scsita.org
  10. Addenddum No. 6 to JESD8 - High Speed Transceiver Logic (HSTL)- A 1.5 V Output Buffer Supply Voltage Based Interface Standard for Digital Integrated Circuits (August 1995).
  11. POD15 ‐ 1.5 V Pseudo Open Drain Interface (October 2009).
  12. Pseudo Open Drain Interface (September 2017).
  13. POD135 ‐ 1.35 V Pseudo Open Drain Interface (March 2018).
  14. POD12 ‐ 1.2 V Pseudo Open Drain Interface (August 2011).
  15. Pseudo-open drain and Center-tab termination type termination schemes