Current mode logic (CML), or source-coupled logic (SCL), is a digital design style used both for logic gates and for board-level digital signaling of digital data.
The basic principle of CML is that current from a constant current generator is steered between two alternate paths depending on whether a logic zero or logic one is being represented. Typically, the generator is connected to the two sources of a pair of differential FETs, with the two paths being their two drains. The bipolar equivalent emitter-coupled logic (ECL) operates in a contrasting fashion, still differential but with the output being taken from the emitters of the BJT transistors (rather than the collectors, which would be analogous to the drains of the FETs).
As a differential PCB-level interconnect, it is intended to transmit data at speeds between 312.5 Mbit/s and 3.125 Gbit/s across standard printed circuit boards. [1]
The transmission is point-to-point, unidirectional, and is usually terminated at the destination with 50 Ω resistors to Vcc on both differential lines. CML is frequently used in interfaces to fiber optic components. The difference of principal between CML and ECL as a link technology is the output impedance of the driver stage: the emitter follower of ECL has a low resistance of around 5 Ω whereas CML connects to the drains of the driving transistors, that have a high impedance, and so the impedance of the pull up/down network (typically 50 Ω resistive) is the effective output impedance. Matching this drive impedance close to the driven transmission line's characteristic impedance greatly reduces undesirable ringing.
CML signals have also been found useful for connections between modules. CML is the physical layer used in DVI, HDMI and FPD-Link III video links, the interfaces between a display controller and a monitor. [2]
In addition, CML has been widely used in high-speed integrated systems, such as for serial data transceivers and frequency synthesizers in telecommunication systems.
The fast operation of CML circuits is mainly due to their lower output voltage swing compared to the static CMOS circuits, as well as the very fast current switching taking place at the input differential pair transistors. One of the primary requirements of a current-mode logic circuit is that the current bias transistor must remain in the saturation region to maintain a constant current.
Recently, CML has been used in ultra-low power applications. Studies show that while the leakage current in conventional static CMOS circuits is becoming a major challenge in lowering the energy dissipation, good control of CML current consumption makes them a very good candidate for extremely low power use. Called subthreshold CML or subthreshold source coupled logic (STSCL), [3] [4] [5] the current consumption of each gate can be reduced down to a few tens of picoamps.
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.
An operational amplifier is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers.
Capacitive coupling is the transfer of energy within an electrical network or between distant networks by means of displacement current between circuit(s) nodes, induced by the electric field. This coupling can have an intentional or accidental effect.
In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally
Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).
Low-voltage differential signaling (LVDS), also known as TIA/EIA-644, is a technical standard that specifies electrical characteristics of a differential, serial signaling standard. LVDS operates at low power and can run at very high speeds using inexpensive twisted-pair copper cables. LVDS is a physical layer specification only; many data communication standards and applications use it and add a data link layer as defined in the OSI model on top of it.
In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated region of operation and the resulting slow turn-off behavior. As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL), current-mode logic (CML) or current-switch emitter-follower (CSEF) logic.
In electronics, a common-base amplifier is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a current buffer or voltage amplifier.
A balun is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.
A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs and and one output , in which the output is ideally proportional to the difference between the two voltages:
In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. The circuit is named a trigger because the output retains its value until the input changes sufficiently to trigger a change. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.
In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as a voltage amplifier. It offers high current gain, medium input resistance and a high output resistance. The output of a common emitter amplifier is inverted; i.e. for a sine wave input signal, the output signal is 180 degrees out of phase with respect to the input.
Transition-minimized differential signaling (TMDS) is a technology for transmitting high-speed serial data used by the DVI and HDMI video interfaces, as well as by other digital communication interfaces.
Differential TTL is a type of binary electrical signaling based on the transistor-transistor logic (TTL) concept. It enables electronic systems to be relatively immune to noise. RS-422 and RS-485 outputs can be implemented as differential TTL.
In computer engineering, a logic family is one of two related concepts:
Differential signalling is a method for electrically transmitting information using two complementary signals. The technique sends the same electrical signal as a differential pair of signals, each in its own conductor. The pair of conductors can be wires in a twisted-pair or ribbon cable or traces on a printed circuit board.
In electronic logic circuits, a pull-up resistor (PU) or pull-down resistor (PD) is a resistor used to ensure a known state for a signal. It is typically used in combination with components such as switches and transistors, which physically interrupt the connection of subsequent components to ground or to VCC. Without such resistor, closing the switch creates a direct connection to ground or VCC; when the switch is open, the rest of the circuit would be left floating, which is generally undesirable.
Open collector, open drain, open emitter, and open source refer to integrated circuit (IC) output pin configurations that process the IC's internal function through a transistor with an exposed terminal that is internally unconnected. One of the IC's internal high or low voltage rails typically connects to another terminal of that transistor. When the transistor is off, the output is internally disconnected from any internal power rail, a state called "high-impedance" (Hi-Z). Open outputs configurations thus differ from push–pull outputs, which use a pair of transistors to output a specific voltage or current.
Direct-coupled transistor logic (DCTL) is similar to resistor–transistor logic (RTL), but the input transistor bases are connected directly to the collector outputs without any base resistors. Consequently, DCTL gates have fewer components, are more economical, and are simpler to fabricate onto integrated circuits than RTL gates. Unfortunately, DCTL has much smaller signal levels, has more susceptibility to ground noise, and requires matched transistor characteristics. The transistors are also heavily overdriven; this is a good feature in that it reduces the saturation voltage of the output transistors, but it also slows the circuit down due to a high stored charge in the base. Gate fan-out is limited due to "current hogging": if the transistor base–emitter voltages are not well matched, then the base–emitter junction of one transistor may conduct most of the input drive current at such a low base–emitter voltage that other input transistors fail to turn on.
The Cathode follower oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit is also known as differential amplifier oscillator, emitter follower oscillator, source-coupled oscillator or Peltz oscillator. This oscillator uses one connection to get a signal from the LC-circuit and feeds an amplified signal back. The amplifier is a long-tail pair of two triodes, two bipolar transistors or two junction FETs.