Ophidiomorpha

Last updated

Ophidimorphs
Temporal range: Middle Jurassic - Holocene, 170–0  Ma
Adriosaurus.jpg
Fossils of Adriosaurus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Clade: Pythonomorpha
Clade: Ophidiomorpha
Palci and Caldwell, 2007
Subgroups

Ophidiomorpha is a proposed clade composed of snakes and a number of extinct squamate groups. The clade was defined by Placi and Caldwell in 2007 as a node-based clade containing the most recent common ancestor of dolichosaurs, adriosaurs, Aphanizocnemus , and fossil and extant Ophidia and all of its descendants. [1]

The existence of Ophidiomorpha as a clade is controversial, as it is placed within the Pythonomorpha (a clade that itself is not universally agreed upon containing mosasaurs and snakes, their most recent common ancestor, and all of that ancestors' descendants). Most 20th-century herpetologists and paleontologists rejected this idea and sought instead to demonstrate a close relationship between mosasaurs and varanid lizards.

Pythonomorpha was later resurrected by a number of paleontologists (Lee, 1997; Caldwell et Lee, 1997) who had conducted cladistic analyses that seemed to show that snakes and mosasaurs may have been more closely related to one another than either were to the varanid lizards, and that snakes more likely arose from aquatic ancestors. [2]

Other authors have rejected the Ophidiomorpha hypothesis, finding that Mosasauria (including dolichosaurs) are unrelated to snakes. [3]

Related Research Articles

<span class="mw-page-title-main">Lizard</span> Informal group of reptiles

Lizard is the common name used for all squamate reptiles other than snakes, encompassing over 7,000 species, ranging across all continents except Antarctica, as well as most oceanic island chains. The grouping is paraphyletic as some lizards are more closely related to snakes than they are to other lizards. Lizards range in size from chameleons and geckos a few centimeters long to the 3-meter-long Komodo dragon.

<span class="mw-page-title-main">Squamata</span> Order of reptiles

Squamata is the largest order of reptiles, comprising lizards and snakes. With over 12162 Species, it is also the second-largest order of extant (living) vertebrates, after the perciform fish. Squamates are distinguished by their skins, which bear horny scales or shields, and must periodically engage in molting. They also possess movable quadrate bones, making possible movement of the upper jaw relative to the neurocranium. This is particularly visible in snakes, which are able to open their mouths very wide to accommodate comparatively large prey. Squamates are the most variably sized living reptiles, ranging from the 16 mm (0.63 in) dwarf gecko to the 6.5 m (21 ft) reticulated python. The now-extinct mosasaurs reached lengths over 14 m (46 ft).

<span class="mw-page-title-main">Varanidae</span> Family of lizards

The Varanidae are a family of lizards in the superfamily Varanoidea and order Anguimorpha. The family, a group of carnivorous and frugivorous lizards, includes the living genus Varanus and a number of extinct genera more closely related to Varanus than to the earless monitor lizard (Lanthanotus). Varanus includes the Komodo dragon, crocodile monitor, savannah monitor, the goannas of Australia and Southeast Asia, and various other species with a similarly distinctive appearance. Their closest living relatives are the earless monitor lizard and Chinese crocodile lizard. The oldest members of the family are known from the Late Cretaceous of Mongolia.

<span class="mw-page-title-main">Ophidia</span> Group of squamate reptiles

Ophidia is a group of squamate reptiles including modern snakes and reptiles more closely related to snakes than to other living groups of lizards.

<span class="mw-page-title-main">Toxicofera</span> Proposed clade of scaled reptiles

Toxicofera is a proposed clade of scaled reptiles (squamates) that includes the Serpentes (snakes), Anguimorpha and Iguania. Toxicofera contains about 4,600 species, of extant Squamata. It encompasses all venomous reptile species, as well as numerous related non-venomous species. There is little morphological evidence to support this grouping; however, it has been recovered by all molecular analyses as of 2012.

<span class="mw-page-title-main">Pythonomorpha</span> Clade of lizards

Pythonomorpha was originally proposed by paleontologist Edward Drinker Cope (1869) as a reptilian order comprising mosasaurs, which he believed to be close relatives of Ophidia (snakes). The etymology of the term Pythonomorpha comes from the Greek Python and morphe ("form"), and refers to the generally serpentine body plan of members of the group. Cope wrote, "In the mosasauroids, we almost realize the fictions of snake-like dragons and sea-serpents, in which men have been ever prone to indulge. On account of the ophidian part of their affinities, I have called this order Pythonomorpha." Cope incorporated two families, the Clidastidae and the Mosasauridae.

<span class="mw-page-title-main">Aigialosauridae</span> Extinct family of lizards

Aigialosauridae is a family of Late Cretaceous semiaquatic pythonomorph lizards closely related to the mosasaurs. Regarded by some paleontologists as a distinct monophyletic group and by others as an adaptive grade within the basal mosasauroids, recent molecular and morphological data suggests that they are the oldest known members of the lineage leading to the mosasaurs.

<i>Adriosaurus</i> Extinct genus of lizards

Adriosaurus is an extinct genus of squamate which lived in what is now Slovenia and other parts of Europe during the Late Cretaceous. It was small, snake-like reptile, with type species measuring up to 30 cm (12 in) in length. This is the first fossil record of vestigial limbs in lizards. It lost its manus and forearm completely in order to elongate its axial skeleton. These unique anatomical features led to discussions of the evolutionary patterns of limb reduction in Squamata.

<span class="mw-page-title-main">Anguimorpha</span> Order of lizards

The Anguimorpha is a suborder of squamates. The group was named by Fürbringer in 1900 to include all autarchoglossans closer to Varanus and Anguis than Scincus. These lizards, along with iguanians and snakes, constitute the proposed "venom clade" Toxicofera of all venomous reptiles.

<span class="mw-page-title-main">Platynota</span> Clade of lizards

Platynota is a polyphyletic group of anguimorph lizards and thus belongs to the order Squamata of the class Reptilia. Since it was named in 1839, it has included several groups, including monitor lizards, snakes, mosasaurs, and helodermatids. Its taxonomic use still varies, as it is sometimes considered equivalent to the group Varanoidea and other times viewed as a distinct group. It is phylogenetically defined as a clade containing Varanidae. It also includes many extinct species.

Acteosaurus is an extinct genus of aquatic lizard that lived in the upper Cretaceous period. Its species, A. tommasinii and A. crassicostatus, were described in 1860 and 1993. Though A. crassicostatus is probably a junior synonym for Adriosaurus suessi, A. tommasinii was found to be similar to coniasaurs, mosasauroids, and a sister taxon to modern snakes in 2010.

<span class="mw-page-title-main">Evolution of reptiles</span> Origin and diversification of reptiles through geologic time

Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.

<span class="mw-page-title-main">Tethysaurinae</span> Extinct subfamily of lizards

The Tethysaurinae are a subfamily of mosasaurs, a diverse group of Late Cretaceous marine squamates. Members of the subfamily are informally and collectively known as "tethysaurines" and have been recovered from North America and Africa. Only two tethysaurine genera are known, Pannoniasaurus and Tethysaurus. The genera Yaguarasaurus and Russellosaurus were previously considered tethysaurines until they were grouped with Romeosaurus in the new subfamily Yaguarasaurinae. A possible member of this clade (subfamily) is a mosasaur specimen known from a maxilla fragment, found in 1960 in the Czech Republic, in Dolní Újezd near Litomyšl.

<span class="mw-page-title-main">Gekkonomorpha</span> Clade of lizards

Gekkonomorpha is a clade of lizards that includes geckos and their closest relatives. Although it was first named in 1900, Gekkonomorpha was not widely used as a formal taxon until it was given a phylogenetic definition in the 1990s. Under this definition, Gekkonomorpha is a stem-based taxon containing the node-based taxon Gekkota, the group that includes the last common ancestor of all living geckos and its descendants. The extent of Gekkonomorpha beyond gekkotans differs between studies. For example, Lee (1998) defined Gekkonomorpha in such a way that it included not only Gekkota but the legless amphisbaenian and dibamid lizards as well. The phylogenetic analysis of Conrad (2008), which did not support a close relationship between geckos and legless lizards, used Gekkonomorpha in a much more restrictive sense so that it included only Gekkota and a few extinct lizards more closely related to Gekkota than to any other living group of lizards. Some of the most recent phylogenetic analyses suggest that the extinct lizards Gobekko and Parviraptor may be stem gekkotans, although other analyses find that Gobekko may instead be within Gekkota and Parviraptor outside Gekkonomorpha.

<span class="mw-page-title-main">Dipsadinae</span> Subfamily of snakes

Dipsadinae is a large subfamily of colubroid snakes, sometimes referred to as a family (Dipsadidae). Species of the subfamily Dipsadinae are found in most of the Americas, including the West Indies, and are most diverse in South America. There are more than 700 member species.

<i>Tetrapodophis</i> Extinct genus of lizard

Tetrapodophis is an extinct genus of lizard from the Early Cretaceous (Aptian) aged Crato Formation of Brazil. It has an elongate snake-like body, with four limbs. Tetrapodophis has been considered by some authors to be one of the oldest members of Ophidia. However, this classification has been disputed by some other authors, who identify Tetrapodophis as a dolichosaurid much less closely related to snakes.

<span class="mw-page-title-main">Dolichosauridae</span> Extinct family of lizards

Dolichosauridae is a family of Cretaceous aquatic lizards. They are widely considered to be the earliest and most primitive members of Mosasauria, though some researchers have recovered them as more closely related to snakes.

<span class="mw-page-title-main">Mosasauria</span> Extinct squamates of the Cretaceous period

Mosasauria is a clade of aquatic and semiaquatic squamates that lived during the Cretaceous period. Fossils belonging to the group have been found in all continents around the world. Early mosasaurians like dolichosaurs were small long-bodied lizards that inhabited nearshore coastal and freshwater environments; the Late Cretaceous saw the rise of large marine forms, the mosasaurids, which are the clade's best-known members.

<span class="mw-page-title-main">Colubroides</span> Clade of snakes

The Colubroides are a clade in the suborder Serpentes (snakes). It contains over 85% of all the extant species of snakes. The largest family is Colubridae, but it also includes at least six other families, at least four of which were once classified as "Colubridae" before molecular phylogenetics helped in understanding their relationships. It has been found to be monophyletic.

References

  1. Palci, A., & Caldwell, M. W. (2007). Vestigial forelimbs and axial elongation in a 95 million-year-old non-snake squamate. Journal of Vertebrate Paleontology, 27(1), 1-7.
  2. Lee, M. S. Y. 1997. The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London B 352:53-91.
  3. Augusta, Bruno G.; Zaher, Hussam; Polcyn, Michael J.; Fiorillo, Anthony R.; Jacobs, Louis L. (2022-08-11), Gower, David J.; Zaher, Hussam (eds.), "A Review of Non-Mosasaurid (Dolichosaur and Aigialosaur) Mosasaurians and Their Relationships to Snakes", The Origin and Early Evolutionary History of Snakes (1 ed.), Cambridge University Press, pp. 157–179, doi:10.1017/9781108938891.011, ISBN   978-1-108-93889-1 , retrieved 2024-01-30