An orrery is a mechanical model of the Solar System that illustrates or predicts the relative positions and motions of the planets and moons, usually according to the heliocentric model. It may also represent the relative sizes of these bodies; however, since accurate scaling is often not practical due to the actual large ratio differences, it may use a scaled-down approximation. The Greeks had working planetaria, but the first modern example was produced c. 1712 by John Rowley. [1] He named it "orrery" [2] for his patron Charles Boyle, 4th Earl of Orrery (in County Cork, Ireland). The plaque on it reads "Orrery invented by Graham 1700 improved by Rowley and presented by him to John [sic] Earl of Orrery after whom it was named at the suggestion of Richard Steele." [3] [4]
Orreries are typically driven by a clockwork mechanism with a globe representing the Sun at the centre, and with a planet at the end of each of a series of arms.
The Antikythera mechanism, discovered in 1901 in a wreck off the Greek island of Antikythera in the Mediterranean Sea, exhibited the diurnal motions of the Sun, Moon, and the five planets known to the ancient Greeks. It has been dated between 205 to 87 BC. [5] [6] [7] The mechanism is considered one of the first orreries. [8] It was geocentric and used as a mechanical calculator to calculate astronomical positions.
Cicero, the Roman philosopher and politician writing in the first century BC, has references describing planetary mechanical models. According to him, the Greek polymaths Thales [9] and Posidonius [10] both constructed a device modeling celestial motion.
In 1348, Giovanni Dondi built the first known clock driven mechanism of the system. It displays the ecliptic position of the Moon, Sun, Mercury, Venus, Mars, Jupiter and Saturn according to the complicated geocentric Ptolemaic planetary theories. [11] [12] The clock itself is lost, but Dondi left a complete description of its astronomic gear trains.
As late as 1650, P. Schirleus built a geocentric planetarium with the Sun as a planet, and with Mercury and Venus revolving around the Sun as its moons. [13]
At the court of William IV, Landgrave of Hesse-Kassel two complicated astronomic clocks were built in 1561 and 1563–1568. These use four sides to show the ecliptical positions of the Sun, Mercury, Venus, Mars, Jupiter, Saturn, the Moon, Sun and Dragon (Nodes of the Moon) according to Ptolemy, a calendar, the sunrise and sunset, and an automated celestial sphere with an animated Sun symbol which, for the first time on a celestial globe, shows the real position of the Sun, including the equation of time. [14] [15] The clocks are now on display in Kassel at the Astronomisch-Physikalisches Kabinett and in Dresden at the Mathematisch-Physikalischer Salon.
In De revolutionibus orbium coelestium , published in Nuremberg in 1543, Nicolaus Copernicus challenged the Western teaching of a geocentric universe in which the Sun revolved daily around the Earth. He observed that some Greek philosophers such as Aristarchus of Samos had proposed a heliocentric universe. This simplified the apparent epicyclic motions of the planets, making it feasible to represent the planets' paths as simple circles. This could be modeled by the use of gears. Tycho Brahe's improved instruments made precise observations of the skies (1576–1601), and from these Johannes Kepler (1621) deduced that planets orbited the Sun in ellipses. In 1687 Isaac Newton explained the cause of elliptic motion in his theory of gravitation. [16]
There is an orrery built by clock makers George Graham and Thomas Tompion dated c. 1710 in the History of Science Museum, Oxford. [17] Graham gave the first model, or its design, to the celebrated instrument maker John Rowley of London to make a copy for Prince Eugene of Savoy. Rowley was commissioned to make another copy for his patron Charles Boyle, 4th Earl of Orrery, from which the device took its name in English. [18] [19] This model was presented to Charles' son John, later the 5th Earl of Cork and 5th Earl of Orrery. Independently, Christiaan Huygens published in 1703 details of a heliocentric planetary machine which he had built while living in Paris between 1665 and 1681. He calculated the gear trains needed to represent a year of 365.242 days, and used that to produce the cycles of the principal planets. [13]
Joseph Wright's painting A Philosopher giving a Lecture on the Orrery (c. 1766), which hangs in the Derby Museum and Art Gallery, depicts a group listening to a lecture by a natural philosopher. The Sun in a brass orrery provides the only light in the room. The orrery depicted in the painting has rings, which give it an appearance similar to that of an armillary sphere. The demonstration was thereby able to depict eclipses. [20]
To put this in chronological context, in 1762 John Harrison's marine chronometer first enabled accurate measurement of longitude. In 1766, astronomer Johann Daniel Titius first demonstrated that the mean distance of each planet from the Sun could be represented by the following progression:
That is, 0.4, 0.7, 1.0, 1.6, 2.8, ... The numbers refer to astronomical units, the mean distance between Sun and Earth, which is 1.496 × 108 km (93 × 106 miles). The Derby Orrery does not show mean distance, but demonstrated the relative planetary movements.
The Eisinga Planetarium was built from 1774 to 1781 by Eise Eisinga in his home in Franeker, in the Netherlands. It displays the planets across the width of a room's ceiling, and has been in operation almost continually since it was created. [21] This orrery is a planetarium in both senses of the word: a complex machine showing planetary orbits, and a theatre for depicting the planets' movement. Eisinga house was bought by the Dutch Royal family who gave him a pension.
In 1764, Benjamin Martin devised a new type of planetary model, in which the planets were carried on brass arms leading from a series of concentric or coaxial tubes. With this construction it was difficult to make the planets revolve, and to get the moons to turn around the planets. Martin suggested that the conventional orrery should consist of three parts: the planetarium where the planets revolved around the Sun, the tellurion (also tellurian or tellurium) which showed the inclined axis of the Earth and how it revolved around the Sun, and the lunarium which showed the eccentric rotations of the Moon around the Earth. In one orrery, these three motions could be mounted on a common table, separately using the central spindle as a prime mover. [8]
All orreries are planetariums . The term orrery has only existed since 1714. A grand orrery is one that includes the outer planets known at the time of its construction. The word planetarium has shifted meaning, and now usually refers to hemispherical theatres in which images of the night sky are projected onto an overhead surface. Orreries can range widely in size from hand-held to room-sized. An orrery is used to demonstrate the motion of the planets, while a mechanical device used to predict eclipses and transits is called an astrarium.
An orrery should properly include the Sun, the Earth and the Moon (plus optionally other planets). A model that only includes the Earth, the Moon, and the Sun is called a tellurion or tellurium, and one which only includes the Earth and the Moon is a lunarium. A jovilabe is a model of Jupiter and its moons. [22]
Planet | Average distance from Sun (AU) | Diameter (in Earth diameters) | Mass (in Earth masses) | Density (g/cm3) | No. of moons | Orbital period (years) | Inclination to ecliptic (degrees) | Axial tilt (degrees) | Rotational period (sidereal) |
---|---|---|---|---|---|---|---|---|---|
Mercury | 0.39 | 0.38 | 0.05 | 5.5 | 0 | 0.24 | 7.0° | 0° | 59 days |
Venus | 0.72 | 0.95 | 0.82 | 5.3 | 0 | 0.62 | 3.4° | 177° | -243 days |
Earth | 1.00 | 1.00 | 1.00 | 5.5 | 1 | 1.00 | 0° | 23° | 23.9 hours |
Mars | 1.52 | 0.53 | 0.11 | 3.9 | 2 | 1.88 | 1.9° | 25° | 24.5 hours |
Jupiter | 5.20 | 11.21 | 317.9 | 1.3 | 95 | 11.9 | 1.3° | 3° | 10 hours |
Saturn | 9.54 | 9.45 | 95.2 | 0.7 | 146 | 29.5 | 2.5° | 27° | 11 hours |
Uranus | 19.2 | 4.01 | 14.5 | 1.3 | 28 | 84 | 0.8° | 98° | -17 hours |
Neptune | 30.1 | 3.88 | 17.1 | 1.6 | 16 | 165 | 1.8° | 28° | 16 hours |
A planetarium will show the orbital period of each planet and the rotation rate, as shown in the table above. A tellurion will show the Earth with the Moon revolving around the Sun. It will use the angle of inclination of the equator from the table above to show how it rotates around its own axis. It will show the Earth's Moon, rotating around the Earth. [23] A lunarium is designed to show the complex motions of the Moon as it revolves around the Earth.
Orreries are usually not built to scale. Human orreries, where humans move about as the planets, have also been constructed, but most are temporary. There is a permanent human orrery at Armagh Observatory in Northern Ireland, which has the six ancient planets, Ceres, and comets Halley and Encke. Uranus and beyond are also shown, but in a fairly limited way. [24] Another is at Sky's the Limit Observatory and Nature Center in Twentynine Palms, California; it is a true to scale (20 billion to one), true to position (accurate to within four days) human orrery. The first four planets are relatively close to one another, but the next four require a certain amount of hiking in order to visit them. [25] A census of all permanent human orreries has been initiated by the French group F-HOU with a new effort to study their impact for education in schools. [26] A map of known human orreries is available. [27]
A normal mechanical clock could be used to produce an extremely simple orrery to demonstrate the principle, with the Sun in the centre, Earth on the minute hand and Jupiter on the hour hand; Earth would make 12 revolutions around the Sun for every 1 revolution of Jupiter. As Jupiter's actual year is 11.86 Earth years long, the model would lose accuracy rapidly.
Many planetariums have a projection orrery, which projects onto the dome of the planetarium a Sun with either dots or small images of the planets. These usually are limited to the planets from Mercury to Saturn, although some include Uranus. The light sources for the planets are projected onto mirrors which are geared to a motor which drives the images on the dome. Typically the Earth will circle the Sun in one minute, while the other planets will complete an orbit in time periods proportional to their actual motion. Thus Venus, which takes 224.7 days to orbit the Sun, will take 37 seconds to complete an orbit on an orrery, and Jupiter will take 11 minutes, 52 seconds.
Some planetariums have taken advantage of this to use orreries to simulate planets and their moons. Thus Mercury orbits the Sun in 0.24 of an Earth year, while Phobos and Deimos orbit Mars in a similar 4:1 time ratio. Planetarium operators wishing to show this have placed a red cap on the Sun (to make it resemble Mars) and turned off all the planets but Mercury and Earth. Similar approximations can be used to show Pluto and its five moons.
Shoemaker John Fulton of Fenwick, Ayrshire, built three between 1823 and 1833. The last is in Glasgow's Kelvingrove Art Gallery and Museum.
The Eisinga Planetarium built by a wool carder named Eise Eisinga in his own living room, in the small city of Franeker in Friesland, is in fact an orrery. It was constructed between 1774 and 1781. The base of the model faces down from the ceiling of the room, with most of the mechanical works in the space above the ceiling. It is driven by a pendulum clock, which has 9 weights or ponds. The planets move around the model in real time. [28]
An innovative concept is to have people play the role of the moving planets and other Solar System objects. Such a model, called a human orrery, has been laid out at the Armagh Observatory. [24]
The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.
The following is a timeline of Solar System astronomy and science. It includes the advances in the knowledge of the Earth at planetary scale, as part of it.
A planetarium is a theatre built primarily for presenting educational and entertaining shows about astronomy and the night sky, or for training in celestial navigation.
In astronomy, the geocentric model is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age.
The Antikythera mechanism is an Ancient Greek hand-powered orrery. It is the oldest known example of an analogue computer. It could be used to predict astronomical positions and eclipses decades in advance. It could also be used to track the four-year cycle of athletic games similar to an Olympiad, the cycle of the ancient Olympic Games.
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.
The Tychonic system is a model of the universe published by Tycho Brahe in 1588, which combines what he saw as the mathematical benefits of the Copernican system with the philosophical and "physical" benefits of the Ptolemaic system. The model may have been inspired by Valentin Naboth and Paul Wittich, a Silesian mathematician and astronomer. A similar cosmological model was independently proposed in the Hindu astronomical treatise Tantrasamgraha by Nilakantha Somayaji of the Kerala school of astronomy and mathematics.
A classical planet is an astronomical object that is visible to the naked eye and moves across the sky and its backdrop of fixed stars. Visible to humans on Earth there are seven classical planets. They are from brightest to dimmest: the Sun, the Moon, Venus, Jupiter, Mars, Mercury and Saturn.
The Prague astronomical clock or Prague Orloj is a medieval astronomical clock attached to the Old Town Hall in Prague, the capital of the Czech Republic.
An astronomical clock, horologium, or orloj is a clock with special mechanisms and dials to display astronomical information, such as the relative positions of the Sun, Moon, zodiacal constellations, and sometimes major planets.
Eise Jeltes Eisinga was a Frisian amateur astronomer who built the Eise Eisinga Planetarium in his house in Franeker, Dutch Republic. The orrery still exists and is the oldest functioning planetarium in the world.
A tellurion, is a clock, typically of French or Swiss origin, surmounted by a mechanism that depicts how day, night, and the seasons are caused by the rotation and orientation of Earth on its axis and its orbit around the Sun. The clock normally also displays the phase of the Moon and the four-year (perpetual) calendar.
The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. This revolution consisted of two phases; the first being extremely mathematical in nature and the second phase starting in 1610 with the publication of a pamphlet by Galileo. Beginning with the 1543 publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium, contributions to the “revolution” continued until finally ending with Isaac Newton’s work over a century later.
The Strasbourg astronomical clock is located in the Cathédrale Notre-Dame of Strasbourg, Alsace, France. It is the third clock on that spot and dates from the time of the first French possession of the city (1681–1870). The first clock had been built in the 14th century and the second in the 16th century when Strasbourg was a Free imperial city of the Holy Roman Empire.
An astrarium, also called a planetarium, is a medieval astronomical clock made in the 14th century by Italian engineer and astronomer Giovanni Dondi dell'Orologio. The Astrarium was modeled after the solar system and, in addition to counting time and representing calendar dates and holidays, showed how the planets moved around the celestial sphere in one timepiece. This was its main task, in comparison with the astronomical clock, the main task of which is the actual reading of time. A complex mechanism, it combined the functions of a modern planetarium, clock, and calendar into a singular constructive device. Devices that perform this function were known to have been created prior to the design of Dondi, though relatively little is known about them. It is occasionally erroneously claimed by the details of some sources that the Astrarium was the first mechanical device showing the movements of the planets.
An equatorium is an astronomical calculating instrument. It can be used for finding the positions of the Moon, Sun, and planets without arithmetic operations, using a geometrical model to represent the position of a given celestial body.
Discovery and exploration of the Solar System is observation, visitation, and increase in knowledge and understanding of Earth's "cosmic neighborhood". This includes the Sun, Earth and the Moon, the major planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, their satellites, as well as smaller bodies including comets, asteroids, and dust.
Michael T. Wright, FSA is a former curator of mechanical engineering at the Science Museum and later at Imperial College in London, England. He is known for his analysis of the original fragments of the Antikythera mechanism and for the reconstruction of this Ancient Greek brass mechanism.
The Royal Eise Eisinga Planetarium is an 18th-century orrery in Franeker, Friesland, Netherlands. It is currently a museum and open to the public. The orrery has been on the top 100 Dutch heritage sites list since 1990. In September 2023, it received the status of UNESCO World Heritage Site. It is the oldest working orrery in the world.
Historical models of the Solar System first appeared during prehistoric periods and remain updated to this day.. The models of the Solar System throughout history were first represented in the early form of cave markings and drawings, calendars and astronomical symbols. Then books and written records became the main source of information that expressed the way the people of the time thought of the Solar System.
[...] inscription on a brass plaque attached to Rowley's orrery, which reads: 'Orrery invented by Graham 1700. Improved by Rowley and presented by him to John Earl of Orrery, after whom it was named at the suggestion of Richard Steele.'
While the model was with Rowley, he was commissioned by the Earl of Orrery to make a copy for him, and Rowley then named the model an orrery after his patron. [...] It had been suggested that Sir Richard Steele (Irish essayist, 1672-1729) came across Rowley's model in a presentation delivered by Rowley and, knowing nothing of the Graham model, named it an orrery in honor of the Earl of Orrery to popularize it. [...] the lecturer and writer Desaguliers (1683-1744) [...] attribute[d] the actual naming of the orrery to Steele when it was, quite possibly, Rowley [...].
{{cite journal}}
: CS1 maint: multiple names: authors list (link)dicebat enim Gallus sphaerae illius alterius solidae atque plenae vetus esse inventum, et eam a Thalete Milesio primum esse tornatam, post autem ab Eudoxo Cnidio, discipulo ut ferebat Platonis, eandem illam astris quae caelo inhaererent esse descriptam;
But if that sphere which was lately made by our friend Posidonius, the regular revolutions of which show the course of the sun, moon, and five wandering stars, as it is every day and night performed, were carried into Scythia or Britain, who, in those barbarous countries, would doubt that that sphere had been made so perfect by the exertion of reason?
{{cite web}}
: CS1 maint: location (link)