Otozamites

Last updated

Otozamites
Temporal range: Upper Triassic–Lower Cretaceous
Otozamites bunburyanus.JPG
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Order: Bennettitales
Family: Williamsoniaceae
Genus: Otozamites
C.F.W.Braun
Type species
Otozamites brevifolius

Otozamites is an extinct form genus of leaves belonging to the Bennettitales. [1] [2] [3] [4]

Most of the Otozamites leaves are secluded and conserved as pinnae. [5]

Leaflet of Otozamites have the shape of an elongated triangular shape with an acute apex. [6]

Otozamites pinnae that emerge from the rachis has never been recorded ever before in the history of the organism, worldwide. [7]

Related Research Articles

<span class="mw-page-title-main">Cycad</span> Division of naked seeded dioecious plants

Cycads are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow very slowly and live very long. Because of their superficial resemblance, they are sometimes mistaken for palms or ferns, but they are not closely related to either group.

<span class="mw-page-title-main">Bennettitales</span> Extinct order of seed plants

Bennettitales is an extinct order of seed plants that first appeared in the Permian period and became extinct in most areas toward the end of the Cretaceous. Bennettitales were amongst the most common seed plants of the Mesozoic, and had morphologies including shrub and cycad-like forms. The foliage of bennettitaleans is superficially nearly indistinguishable from that of cycads, but they are distinguished from cycads by their more complex flower-like reproductive organs, at least some of which were likely pollinated by insects.

<i>Williamsonia</i> (plant) Extinct genus of plant

Williamsonia is a genus of plant belonging to Bennettitales, an extinct order of seed plants. Within the form classification system used in paleobotany, Williamsonia is used to refer to female seed cones, which are associated with plants that also bore the male flower-like reproductive structure Weltrichia.

<i>Pachypteris</i> Mesozoic pteridosperm leaf fossil

Pachypteris is a Mesozoic pteridosperm genus of fossil leaves. It has either been aligned with the peltasperms or the corystosperms.

<i>Nilssonia</i> (plant) Fossil plant of gondwana supergroup of India

Nilssonia is a genus of fossil foliage traditionally assigned to the Cycadophyta either in Cycadales or their own order Nilssoniales, though the relationships of this genus with the Cycadales have been put into question on chemical grounds.

<i>Zamites</i> Extinct genus of bennettitalean foliage

Zamites is a genus of sterile foliage known from the Mesozoic of North America, Europe, India and Antarctica through the Eocene of North America. It was erected as a form taxon for leaves that superficially resembled the extant cycad Zamia, however it is now believed to belong to a similar but phylogenetically different group, the cyacadeoids (Bennettitales). The fronds are linear or lanceolate in shape, and pinnately compound, with pinnae with parallel veins and smooth margins, and symmetrical and constricted at the base where they are attached obliquely to the upper surface of the rachis. It has been interpreted as a Bennettitalean plant in the family Williamsoniaceae. It is associated with the ovulate cone Williamsonia and male cone Weltrichia.

This article records new taxa of fossil plants that are scheduled to be described during the year 2015, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2015.

This article contains papers in paleobotany that were published in 2016.

<span class="mw-page-title-main">Corystospermaceae</span> Extinct family of seed ferns

Corystosperms are a group of extinct seed plants belonging to the family Corystospermaceae assigned to the order Corystospermales or Umkomasiales. They were first described based on fossils collected by Hamshaw Thomas from the Burnera Waterfall locality near the Umkomaas River of South Africa. Corystosperms are typified by a group of plants that bore forked Dicroidium leaves, Umkomasia cupulate ovulate structures and Pteruchus pollen organs, which grew as trees that were widespread over Gondwana during the Middle and Late Triassic. Other fossil Mesozoic seed plants with similar leaf and/or reproductive structures have also sometimes been included within the "corystosperm" concept sensu lato, such as the "doyleoids" from the Early Cretaceous of North America and Asia. A potential corystosperm sensu lato, the leaf genus Komlopteris, is known from the Eocene of Tasmania, around 53-50 million years old, over 10 million years after the Cretaceous–Paleogene extinction event.

This article records new taxa of plants that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleobotany that occurred in the year 2018.

This article records new taxa of plants that were described during the year 2014, as well as other significant discoveries and events related to paleobotany that occurred in the year 2014.

This article records new taxa of fossil plants that are scheduled to be described during the year 2020, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2020.

<i>Ctenis</i> Extinct genus of cycads

Ctenis is a genus of fossil foliage attributable to the Cycadales, being one of the most common genera of cycad fossil leaves in the Mesozoic.

<i>Pterophyllum</i> (plant) Extinct genus of seed plants

Pterophyllum is an extinct form genus of leaves known from the Carnian to the Maastrichtian, belonging to the Bennettitales. It contains more than 50 species, and is mainly found in Eurasia and North America.

This article records new taxa of fossil plants that are scheduled to be described during the year 2021, as well as other significant discoveries and events related to paleobotany that are scheduled to occur in the year 2021.

Nilssoniopteris is an extinct form genus of leaves belonging to the Bennettitales. Leaves are slender and often entire-margined (smooth-edged), though some species have dissected leaves with numerous small segments extending down to the rachis of the leaf. Nilssoniopteris-like leaves are distinguished by their syndetocheilic stomata, indicating bennettitalean affinities. Similar "taeniopterid" leaves are placed in the genus Nilssonia if their stomata are instead haplocheilic, or Taeniopteris if the cuticle is not preserved. Leaves of Nilssoniopteris vittata from the Middle Jurassic of England are associated with bisexual Williamsoniella reproductive structures.

This paleobotany list records new fossil plant taxa that were to be described during the year 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.

This paleobotany list records new fossil plant taxa that were to be described during the year 2012, as well as notes other significant paleobotany discoveries and events which occurred during 2012.

This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.

<i>Umaltolepis</i> Extinct genus of plants

Umaltolepis is an extinct genus of seed plant, known from the Early Jurassic to Early Cretaceous of Asia. Within the form classification system used within paleobotany, it refers to the seed-bearing reproductive structures, which grew on woody plants with strap-shaped Ginkgo-like leaves assigned to the genus Pseudotorellia.

References

  1. Wang, Yong-Dong; Ni, Qing; Jiang, Zi-Kun; Tian, Ning (2008-12-01). "Diversity variation and tempo-spatial distribution of Otozamites (Bennettitales) in the Mesozoic of China". Palaeoworld. Palaeobotany Issue: Biodiversity, Anatomy and Evolution of the Mesozoic Plants. 17 (3): 222–234. doi:10.1016/j.palwor.2008.10.003. ISSN   1871-174X.
  2. McLoughlin, Stephen; Pott, Christian (2009-06-01). "The Jurassic flora of Western Australia". GFF. 131 (1–2): 113–136. doi: 10.1080/11035890902857846 . ISSN   1103-5897.
  3. Pott, Christian; McLoughlin, Stephen (2009-12-01). "Bennettitalean foliage in the Rhaetian–Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden". Review of Palaeobotany and Palynology. 158 (1): 117–166. doi:10.1016/j.revpalbo.2009.08.004. ISSN   0034-6667.
  4. Wang, Y. D., Ni, Q., Jiang, Z. K., & Tian, N. (2008). Diversity variation and tempo-spatial distribution of Otozamites (Bennettitales) in the Mesozoic of China. Palaeoworld, 17(3-4), 222–234.
  5. Barale, G. (1987). New observations on Otozamites pterophylloides Schimper 1872, emend. Saporta 1874, from the Jurassic of France and Denmark. Review of palaeobotany and palynology, 51(1-3), 117–126.
  6. Küpper, K. (1968). Die Gattung Otozamites. Taxon, 17(5), 548–552.
  7. OHANA, T., & KIMURA, T. (1991, December). 929. PERMINERALIZED OTOZAMITES LEAVES (BENNETTITALES) FROM THE UPPER CRETACEOUS OF HOKKAIDO, JAPAN. In Transactions and proceedings of the Paleontological Society of Japan. New series (Vol. 1991, No. 164, pp. 944–963). Palaeontological Society of Japan.