Pavlovaceae

Last updated

Pavlovaceae
CSIRO ScienceImage 7604 Microalgae.jpg
Pavlova sp.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Phylum: Haptista
Subphylum: Haptophytina
J. C. Green & L. K. Medlin, 2000
Class: Pavlovophyceae
Order: Pavlovales
J. C. Green
Family: Pavlovaceae
J. C. Green
Genera

Diacronema
Exanthemachrysis
Pavlova
Rebecca

Synonyms
  • Pavlovea T. Cavalier-Smith, 1993
Illustration: Pavlova Prymnesiophyceae009-Pavlovae.jpg
Illustration: Pavlova

Pavlovaceae is a family of haptophytes. It is the only family in the order Pavlovales, which is the only order in the class Pavlovophyceae. [1] It contains four genera, Diacronema , Exanthemachrysis , Pavlova and Rebecca . [2]

Pavlovophyceae haptophytes also reportedly store photosynthetic carbon in paramylon polysaccharide granules (with a crystalline microfibrillar structure), [3] unlike the chrysolaminarin used as the polysacharide storage form by most haptophytes. [4] [5]

Related Research Articles

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Haptophyte</span> Type of algae

The haptophytes, classified either as the Haptophyta, Haptophytina or Prymnesiophyta, are a clade of algae.

<span class="mw-page-title-main">Cryptomonad</span> Group of algae and colorless flagellates

The cryptomonads are a group of algae, most of which have plastids. They are traditionally considered a division of algae among phycologists, under the name of Cryptophyta. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella. Some may exhibit mixotrophy. They are classified as clade Cryptomonada, which is divided into two classes: heterotrophic Goniomonadea and phototrophic Cryptophyceae. The two groups are united under three shared morphological characteristics: presence of a periplast, ejectisomes with secondary scroll, and mitochondrial cristae with flat tubules. Genetic studies as early as 1994 also supported the hypothesis that Goniomonas was sister to Cryptophyceae. A study in 2018 found strong evidence that the common ancestor of Cryptomonada was an autotrophic protist.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Paramylon</span> Chemical compound

Paramylon is a carbohydrate similar to starch. The chloroplasts found in Euglena contain chlorophyll which aids in the synthesis of carbohydrates to be stored as starch granules and paramylon.

<span class="mw-page-title-main">Thomas Cavalier-Smith</span> British evolutionary biologist (1942–2021)

Thomas (Tom) Cavalier-Smith, FRS, FRSC, NERC Professorial Fellow, was a professor of evolutionary biology in the Department of Zoology, at the University of Oxford.

<i>Gephyrocapsa huxleyi</i> Unicellular algae responsible for the formation of chalk

Gephyrocapsa huxleyi, formerly called Emiliania huxleyi, is a species of coccolithophore found in almost all ocean ecosystems from the equator to sub-polar regions, and from nutrient rich upwelling zones to nutrient poor oligotrophic waters. It is one of thousands of different photosynthetic plankton that freely drift in the photic zone of the ocean, forming the basis of virtually all marine food webs. It is studied for the extensive blooms it forms in nutrient-depleted waters after the reformation of the summer thermocline. Like other coccolithophores, E. huxleyi is a single-celled phytoplankton covered with uniquely ornamented calcite disks called coccoliths. Individual coccoliths are abundant in marine sediments although complete coccospheres are more unusual. In the case of E. huxleyi, not only the shell, but also the soft part of the organism may be recorded in sediments. It produces a group of chemical compounds that are very resistant to decomposition. These chemical compounds, known as alkenones, can be found in marine sediments long after other soft parts of the organisms have decomposed. Alkenones are most commonly used by earth scientists as a means to estimate past sea surface temperatures.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

Diacronema is a genus of haptophytes.

<i>Isochrysis</i> Genus of single-celled organisms

Isochrysis is a genus of haptophytes. Until recently this genus was also thought to contain the 'T-iso' algae frequently used in aquaculture; that species has been reclassified as Tisochrysis lutea.

<i>Chrysochromulina</i> Genus of single-celled organisms

Chrysochromulina is a genus of haptophytes. This phytoplankton is distributed globally in brackish and marine waters across approximately 60 known species. All Chrysochromulina species are phototrophic, however some have been shown to be mixotrophic, including exhibiting phagotrophy under certain environmental conditions. The cells are small, characterized by having scales, and typically observed using electron microscopy. Some species, under certain environmental conditions have been shown to produce toxic compounds that are harmful to larger marine life including fish.

<span class="mw-page-title-main">Katablepharid</span> Group of algae

The kathablepharids or katablepharids are a group of heterotrophic flagellates closely related to cryptomonads. First described by Heinrich Leonhards Skuja in 1939, kathablepharids were named after the genus Kathablepharis. This genus is corrected to Katablepharis under botanical nomenclature, but the original spelling is maintained under zoological nomenclature. They are single-celled protists with two anteriorly directed flagella, an anterior cytostome for ingesting eukaryotic prey, and a sheath that covers the cell membrane. They have extrusomes known as ejectisomes, as well as tubular mitochondrial cristae.

Telonema is a genus of single-celled organisms.

Pelagomonas is a genus of heterokont algae. It is a monotypic genus and includes a single species, Pelagomonas calceolata which is a unicellular flagellate organism, an ubiquitous constituent of marine picoplankton. It is an ultra-planktonic marine alga.

<span class="mw-page-title-main">Picozoa</span> Phylum of marine unicellular heterotrophic eukaryotes

Picozoa, Picobiliphyta, Picobiliphytes, or Biliphytes are protists of a phylum of marine unicellular heterotrophic eukaryotes with a size of less than about 3 micrometers. They were formerly treated as eukaryotic algae and the smallest member of photosynthetic picoplankton before it was discovered they do not perform photosynthesis. The first species identified therein is Picomonas judraskeda. They probably belong in the Archaeplastida as sister of the Rhodophyta.

<span class="mw-page-title-main">Polykrikaceae</span> Family of single-celled organisms

The Polykrikaceae are a family of athecate dinoflagellates of the order Gymnodiniales. Members of the family are known as polykrikoids. The family contains two genera: Polykrikos and Pheopolykrikos.

<span class="mw-page-title-main">Cryptista</span> Clade of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

<span class="mw-page-title-main">Haptista</span> Group of protists

Haptista is a proposed group of protists made up of centrohelids and haptophytes. Phylogenomic studies indicate that Haptista, together with Ancoracysta twista, forms a sister clade to the SAR+Telonemia supergroup, but it may also be sister to the Cryptista (+Archaeplastida). It is thus one of the earliest diverging Diaphoretickes.

Rappephyceae, or Rappemonads, are a small family of protists first described in 2011, of uncertain phylogenic affinity. It has been discussed as a possible member of a larger clade Haptophyta. This newly identified taxonomic class of phytoplankton are named after a professor from the Hawai’i institute of marine biology, known as Michael Rappé. Rappé discovered these phytoplankton in the Atlantic Ocean and published his findings on their DNA in 1998. Current research has shown that these organisms provide an immense amount of nutritional molecules, such as oxygen, for other organisms using biochemical processes like photosynthesis and carbon fixation.

Rebecca is a genus of photosynthetic, flagellated marine haptophytes. It is one of four genera in the family Pavlovaceae. The holotype species, R. salina, was described in 2000 by J.C. Green; it is one of three species currently accepted in the genus. Also in the genus is R. helicata, which was described in the same publication as R. salina, and the third member is R. billiardiae, which was described in 2023. R. helicata and R. salina were both previously considered to be within the genus Pavlova.

References

  1. Bendif, El Mahdi; Probert, Ian; Hervé, Annie; Billard, Chantal; Goux, Didier; Lelong, Christophe; Cadoret, Jean-Paul; Véron, Benoît (2011-11-01). "Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment". Protist. 162 (5): 738–761. doi:10.1016/j.protis.2011.05.001. PMID   21715228.
  2. Guiry, M.D.; Guiry, G.M. "Pavlovaceae". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway.
  3. Bendif, El Mahdi; Probert, Ian; Hervé, Annie; Billard, Chantal; Goux, Didier; Lelong, Christophe; Cadoret, Jean-Paul; Véron, Benoît (2011). "Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment". Protist. 162 (5): 738–761. doi:10.1016/j.protis.2011.05.001.
  4. Tsuji, Yoshinori; Yoshida, Masaki (2017). "Biology of Haptophytes: Complicated Cellular Processes Driving the Global Carbon Cycle". Advances in Botanical Research. Vol. 84. Elsevier. p. 219–261. doi:10.1016/bs.abr.2017.07.002. ISBN   978-0-12-802651-9.
  5. Penot, Mathias; Dacks, Joel B.; Read, Betsy; Dorrell, Richard G. (2022-12-31). "Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae". Applied Phycology. 3 (1): 340–359. doi: 10.1080/26388081.2022.2103732 . ISSN   2638-8081.