Pharyngeal flap surgery | |
---|---|
Specialty | Otorhinolaryngology |
Pharyngeal flap surgery is a procedure to correct the airflow during speech. The procedure is common among people with cleft palate and some types of dysarthria.
Posterior pharyngeal flap surgery is the most commonly used operation to restore velopharyngeal competence (i.e., develop a functional seal between the vocal and the oral cavity), and therefore correct hypernasality and nasal air escape (Ysunza et al., 2002). Posterior pharyngeal flaps can be based superiorly or inferiorly and the velum can be split transversely or along the midline (Lideman-Boshki et al., 2005). Centrally positioned, superior based flaps continue to be the most popular pharyngeal flap choice, yet inferior based flaps are easier for the surgeon to perform. Compared to superiorly based flaps, inferiorly based flaps are limited in regard to the size of velopharyngeal opening that can be covered (Peterson-Falzone et al., 2001).
Pharyngolasties correcting hypernasal speech can be traced back as far as the 19th century when Passavant first explored palatopexy in a 23-year-old female (Hall et al., 1991). In 1876, Schenborn also attempted to reduce the amount of air entering the nasal cavity by developing the first true inferior based pharyngeal flap surgery, where a flap of tissue was sutured into the velum and attached to the lower end of the posterior pharyngeal wall. Modifying his technique, Schoenborn published a superior based pharyngeal flap surgery in 1886, where the flap of tissue attached to the upper end of the posterior pharyngeal wall is peninsula together. In 1928, Rosenthal used an inferiorly based posterior pharyngeal flap in combination with a modified von Langenbeck palatoplasty in primary surgery for cleft palate repair. Taking a different approach, Padgett (1930) utilized a superiorly based flap for cleft palate patients whose primary surgical repair had been unsuccessful (Sloan, 2000). By the 1950s, posterior pharyngeal flap surgery became widely adopted in the correction of VPI (Peterson-Falzone et al., 2001).
In the 1970s, Hogan and Shprintzen advanced posterior pharyngeal flaps, leading to an increased success rate in the elimination of VPI. Hogan (1973) proposed a ‘lateral portal control’ flap to modulate the postoperative port size. In this flap, lateral ports exist on both sides of the pharyngeal flap to assist in drainage, nasal breathing, and nasal resonance. Using the pressure-flow studies of Warren and colleagues as a basis for lateral port size, Hogan placed a 4 mm diameter catheter through the lateral ports on either side of the flap to tailor the port size to the perception of nasal resonance (Sloan, 2000). Consistent with Warren’s aerodynamic data, Hogan advocated that the velopharyngeal opening be no greater than 4 mm in diameter because a larger gap would most likely result in hypernasal speech (Peterson-Falzone et al., 2001).
In 1979, Shprintzen advocated ‘tailor-made’ flaps, with the width of the flap determined by the degree of preoperative lateral pharyngeal wall adduction. According to Shprintzen, the base of the pharyngeal flap should be positioned at the site with the greatest level of lateral pharyngeal wall movement. In addition, Shprintzen recommends that a narrower flap be used with pronounced lateral pharyngeal wall movement, while a wider flap should be used with limited lateral pharyngeal wall movement. [1] (Sloan, 2000) Use of a narrow flap in individuals with limited preoperative lateral pharyngeal wall movement has the potential to increase lateral pharyngeal wall movement postoperatively (Karling et al., 1999).
Pharyngeal flap surgery may be recommended to resolve velopharyngeal inadequacy after patients prove unable to achieve significant speech improvements through speech therapy alone. Other requirements to qualify for the surgery include a short and immobile or easily fatigued palate (Mazaheri et al., 1994).
The patient’s pattern of VP closure is one aspect that is taken take into consideration by doctors in deciding whether pharyngeal flap surgery is the appropriate method of treatment (Armour et al., 2005). A variety of closure patterns have been found, and the pattern varies person to person. When planning pharyngeal flap surgery, it is imperative for the doctor to match the postoperative structure to the preoperative movements in order for an adequate seal to be achieved (Ysunza et al., 2002). Research has found that pharyngeal flap surgery has been most effective for those with a sagittal closure pattern (good lateral wall movement but poor velar movement (Armour et al., 2005)).
Pharyngeal flap surgery is not recommended for everyone and alternative treatment methods are available. One alternative is the use of a prosthesis. In some instances, a prosthesis is capable of stimulating pharyngeal wall movement, thus aiding in VP closure. Most often, prostheses have been recommended for use in young children (Mazaheri et al., 1994). Currently, no accurate method is available to determine whether a pharyngeal flap or an alternative method will have better results for eliminating velopharnygeal incompetence.
Pharyngeal flap surgery has been completed in both children and adults. When younger children undergo the surgery, fewer speech impairments tend to occur. A possible explanation is that the earlier the surgery, the less likely the child will have developed compensatory strategies to overcome the velopharyngeal incompetence (Armour et al., 2005). However, with thorough preoperative planning, pharyngeal flap surgery can be just as effective in eliminating VPI in adults as it is in children (Hall et al., 1991).
The most common complications of pharyngeal flap surgery include airway obstruction and obstructive sleep apnea (Pena, 2000). Snoring has also been noted as a possible negative outcome of the surgery (Sloan, 2000). As a result of flap surgery, the airway is compromised in several ways. Some of the issues associated with this compromise include: narrowing of the nasal and oral airway secondary to edema, impeding of the nasopharynx by the flap itself, anatomical changes in which the oropharynx becomes smaller, and decreased respiratory drive following general anaesthesia. There is also a correlation between the individuals who have this surgery and the presence of other craniofacial and neurological conditions. These factors together may lead to the above complications (Pena, 2000).
Postoperative airway obstruction may range from mild stridor events to severe blockage of the airway resulting in tracheal intubation or tracheotomy. All patients should be closely monitored following surgery due to the possible damage to the newly repaired palate or even the risk of death. In the literature, airway obstruction following pharyngeal flap surgery using the Wardill-Kilner and von Langenbeck techniques are well documented. It has been concluded that individuals with Franceschetti syndrome or Pierre Robin sequence are at increased risk for developing airway obstruction following pharyngoplasty due to their shallow nasopharyngeal airway and inadequate maxillofacial growth at the time of the surgery. It is also believed that prolonged duration of the surgical procedure may be directly correlated with an increased incidence of airway obstruction. Age does not seem to influence the risk. Factors that increase the risk of airway obstruction include associated congenital anomalies and a history of airway problems (Anthony & Sloan, 2002).
Sleep apnea can be categorized as obstructive sleep apnea (OSA) or central sleep apnea. The potential health risks of OSA are severe and therefore even a small percentage of incidence is considered significant. Obstructive sleep apnea symptoms must be carefully assessed following pharyngeal flap surgery (Ysunza). This condition was found to be more commonly linked to posterior pharyngeal flap surgery, however, pharyngeal flaps are considered to be more valuable in correcting velopharyngeal function than other treatment options, especially in severe cases of VPI (Sloan, 2000). It has also been reported that large tonsils have been found in a high percentage of OSA cases. Large tonsils may be shifted posteriorly, under the ports of the flap. In superiorly-based pharyngeal flaps, tonsils are a likely contributor to OSA. Surgical procedures such as uvulopalatopharyngoplasties and tonsillectomies may be required to resolve the OSA. Consequently, tonsillar tissue is an important area of pre-operative assessment (Ysunza et al., 1993).
Pharyngeal flap surgery may be able to improve speech performance in children or adults with a cleft palate who have velopharyngeal insufficiency. In fact, there is a high success rate for improvement of speech following pharyngeal flap surgery. However, surgery does not guarantee perfect or 100% intelligible speech. In addition to speech improvements, pharyngeal flap surgery may help eliminate hypernasality, nasal turbulence, and facial grimacing (Tonz et al., 2002). Often, speech improvements are not obvious immediately following the surgery. Speech improvements are more prevalent after one year post surgery and usually continue for several years. The outcomes of pharyngeal flap surgery vary among each individual in regards to improvements in hyponasality, hypernasality, nasal turbulence, voice quality, articulation, and intelligibility (Tonz et al., 2002; Liedman-Boshki et al., 2005).
Patients who undergo pharyngeal flap surgery encounter the risk of never breathing through their nose again, which could create abnormal speech (i.e., denasal resonance) (Witt et al., 1998). It is estimated that around 20-30% of patients with clefts develop hypernasal speech after pharyngeal flap surgery (Heliovaara et al., 2003). The percentage reported for individuals developing hypernasal speech is debated by researchers. It is possible that hypernasality can be a side effect of pharyngeal flap surgery, however hyponasal speech occurs more frequently after a successful surgery (Liedman-Boshki et al., 2005).
It is also possible that pharyngeal flap surgery will be unsuccessful. Some patients may even require secondary surgery for velopharyngeal insufficiency. It is common that individuals who have to undergo a second surgery could develop secondary speech problems, more specifically compensatory articulation and resonance disorders. Problems occurring post secondary surgery are often more difficult to extinguish (Tonz et al., 2002).
As previously mentioned, one problem that may occur after surgery is hypernasality. This is caused when a narrow flap and inadequate lateral pharyngeal wall movement prohibit lateral port closure during phonation. There are several other reasons surgery may fail the first time, including a poorly designed flap such as one that is too narrow, postoperative scar (contracture of the flap), or inappropriate patient selection. Also, the flap may be too wide and occlude the lateral ports. There are higher rates of surgical failure in children with a history of perinatal upper airway obstruction, such as those with Robin sequence (Witt et al., 1998).
The type of cleft, as well as the type of flap used (superiorly or inferiorly-based) does not seem to make a difference in postoperative speech outcomes. It has been reported that different types of flaps give different speech configurations, however the results showed equally good outcomes for postoperative speech, regardless of the type of flap used. Therefore, it is imperative that the surgeon selects the right type of flap for each individual (Liedman-Boshki et al., 2005).
Overall, speech should improve after pharyngeal flap surgery. It is important to remember that improvement is variable and individuals react to surgery differently. Changes in speech do not always occur immediately after surgery, but this does not mean improvements will not be made. Lastly, speech problems such as compensatory articulation strategies do not often extinguish on their own. A speech language pathologist is usually involved both before and after pharyngeal flap surgery to monitor and help improve speech difficulties.
Augmentation pharyngoplasty is a common alternative operation.
Sleep apnea is a sleep-related breathing disorder in which repetitive pauses in breathing, periods of shallow breathing, or collapse of the upper airway during sleep results in poor ventilation and sleep disruption. Each pause in breathing can last for a few seconds to a few minutes and occurs many times a night. A choking or snorting sound may occur as breathing resumes. Common symptoms include daytime sleepiness, snoring, and non restorative sleep despite adequate sleep time. Because the disorder disrupts normal sleep, those affected may experience sleepiness or feel tired during the day. It is often a chronic condition.
The uvula, also known as the palatine uvula or staphyle, is a conic projection from the back edge of the middle of the soft palate, composed of connective tissue containing a number of racemose glands, and some muscular fibers. It also contains many serous glands, which produce thin saliva. It is only found in humans.
A cleft lip contains an opening in the upper lip that may extend into the nose. The opening may be on one side, both sides, or in the middle. A cleft palate occurs when the palate contains an opening into the nose. The term orofacial cleft refers to either condition or to both occurring together. These disorders can result in feeding problems, speech problems, hearing problems, and frequent ear infections. Less than half the time the condition is associated with other disorders.
Rhinoplasty, commonly called nose job, medically called nasal reconstruction, is a plastic surgery procedure for altering and reconstructing the nose. There are two types of plastic surgery used – reconstructive surgery that restores the form and functions of the nose and cosmetic surgery that changes the appearance of the nose. Reconstructive surgery seeks to resolve nasal injuries caused by various traumas including blunt, and penetrating trauma and trauma caused by blast injury. Reconstructive surgery can also treat birth defects, breathing problems, and failed primary rhinoplasties. Rhinoplasty may remove a bump, narrow nostril width, change the angle between the nose and the mouth, or address injuries, birth defects, or other problems that affect breathing, such as a deviated nasal septum or a sinus condition. Surgery only on the septum is called a septoplasty.
Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder and is characterized by recurrent episodes of complete or partial obstruction of the upper airway leading to reduced or absent breathing during sleep. These episodes are termed "apneas" with complete or near-complete cessation of breathing, or "hypopneas" when the reduction in breathing is partial. In either case, a fall in blood oxygen saturation, a disruption in sleep, or both, may result. A high frequency of apneas or hypopneas during sleep may interfere with the quality of sleep, which – in combination with disturbances in blood oxygenation – is thought to contribute to negative consequences to health and quality of life. The terms obstructive sleep apnea syndrome (OSAS) or obstructive sleep apnea–hypopnea syndrome (OSAHS) may be used to refer to OSA when it is associated with symptoms during the daytime.
Uvulopalatopharyngoplasty is a surgical procedure or sleep surgery used to remove tissue and/or remodel tissue in the throat. This could be because of sleep issues. Tissues which may typically be removed include:
A palatal lift prosthesis is a prosthesis that addresses a condition referred to as palatopharyngeal incompetence. Palatopharyngeal incompetence broadly refers to a muscular inability to sufficiently close the port between the nasopharynx and oropharynx during speech and/or swallowing. An inability to adequately close the palatopharyngeal port during speech results in hypernasalance that, depending upon its severity, can render speakers difficult to understand or unintelligible. The potential for compromised intelligibility secondary to hypernasalance is underscored when consideration is given to the fact that only three English language phonemes – /m/, /n/, and /ng/ – are pronounced with an open palatopharyngeal port. Furthermore, an impaired ability to effect a closure of the palatopharyngeal port while swallowing can result in the nasopharyngeal regurgitation of liquid or solid boluses.
Pierre Robin sequence is a congenital defect observed in humans which is characterized by facial abnormalities. The three main features are micrognathia, which causes glossoptosis, which in turn causes breathing problems due to obstruction of the upper airway. A wide, U-shaped cleft palate is commonly also present. PRS is not merely a syndrome, but rather it is a sequence—a series of specific developmental malformations which can be attributed to a single cause.
Augmentation pharyngoplasty is a kind of plastic surgery for the pharynx when the tissue at the back of the mouth is not able to close properly. It is typically used to correct speech problems in children with cleft palate. It may also be used to correct problems from a tonsillectomy or because of degenerative diseases. After the surgery, patients have an easier time pronouncing certain sounds, such as 'p' and 't', and the voice may have a less nasal sound.
Velopharyngeal inadequacy is a malfunction of a velopharyngeal mechanism which is responsible for directing the transmission of sound energy and air pressure in both the oral cavity and the nasal cavity. When this mechanism is impaired in some way, the valve does not fully close, and a condition known as "velopharyngeal inadequacy" can develop. VPI can either be congenital or acquired later in life.
Vomer flap surgery was used prior to 1975 as a surgical treatment for children with cleft palate. In this procedure, the vomer bone was used to reconstruct the palate and cover the cleft.
A palatal obturator is a prosthesis that totally occludes an opening such as an oronasal fistula. They are similar to dental retainers, but without the front wire. Palatal obturators are typically short-term prosthetics used to close defects of the hard/soft palate that may affect speech production or cause nasal regurgitation during feeding. Following surgery, there may remain a residual orinasal opening on the palate, alveolar ridge, or vestibule of the larynx. A palatal obturator may be used to compensate for hypernasality and to aid in speech therapy targeting correction of compensatory articulation caused by the cleft palate. In simpler terms, a palatal obturator covers any fistulas in the roof of the mouth that lead to the nasal cavity, providing the wearer with a plastic/acrylic, removable roof of the mouth, which aids in speech, eating, and proper air flow.
Velopharyngeal insufficiency is a disorder of structure that causes a failure of the velum to close against the posterior pharyngeal wall during speech in order to close off the nasal cavity during oral speech production. This is important because speech requires sound from the vocal folds and airflow from the lungs to be directed into the oral cavity (mouth) for the production of all speech sounds, with the exception of nasal consonants. If complete closure does not occur during speech, this can cause hypernasality and/or audible nasal emission during speech. In addition, there may be inadequate airflow to produce most consonants, making them sound weak or omitted.
Karl Wilhelm Ernst Joachim Schönborn was a German surgeon who was a native of Breslau.
The pharynx is the part of the throat behind the mouth and nasal cavity, and above the esophagus and trachea. It is found in vertebrates and invertebrates, though its structure varies across species. The pharynx carries food to the esophagus and air to the larynx. The flap of cartilage called the epiglottis stops food from entering the larynx.
Maxillary hypoplasia, or maxillary deficiency, is an underdevelopment of the bones of the upper jaw. It is associated with Crouzon syndrome, Angelman syndrome, as well as Fetal alcohol syndrome. It can also be associated with Cleft lip and cleft palate. Some people could develop it due to poor dental extractions.
Hypernasal speech is a disorder that causes abnormal resonance in a human's voice due to increased airflow through the nose during speech. It is caused by an open nasal cavity resulting from an incomplete closure of the soft palate and/or velopharyngeal sphincter. In normal speech, nasality is referred to as nasalization and is a linguistic category that can apply to vowels or consonants in a specific language. The primary underlying physical variable determining the degree of nasality in normal speech is the opening and closing of a velopharyngeal passageway between the oral vocal tract and the nasal vocal tract. In the normal vocal tract anatomy, this opening is controlled by lowering and raising the velum or soft palate, to open or close, respectively, the velopharyngeal passageway.
Sleep surgery is a surgery performed to treat sleep disordered breathing. Sleep disordered breathing is a spectrum of disorders that includes snoring, upper airway resistance syndrome, and obstructive sleep apnea. These surgeries are performed by surgeons trained in otolaryngology, oral maxillofacial surgery, and craniofacial surgery.
The velopharyngeal fricatives, also known as the posterior nasal fricatives, are a family of sounds sound produced by some children with speech disorders, including some with a cleft palate, as a substitute for sibilants, which cannot be produced with a cleft palate. It results from "the approximation but inadequate closure of the upper border of the velum and the posterior pharyngeal wall." To produce a velopharyngeal fricative, the soft palate approaches the pharyngeal wall and narrows the velopharyngeal port, such that the restricted port creates fricative turbulence in air forced through it into the nasal cavity. The articulation may be aided by a posterior positioning of the tongue and may involve velar flutter.
DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a syndrome caused by a microdeletion on the long arm of chromosome 22. While the symptoms can vary, they often include congenital heart problems, specific facial features, frequent infections, developmental disability, intellectual disability and cleft palate. Associated conditions include kidney problems, schizophrenia, hearing loss and autoimmune disorders such as rheumatoid arthritis or Graves' disease.