Names | |
---|---|
IUPAC name [(2R,3S,4S)-Flavan-3,3′,4′,5,7-pentol]-(4→8)-[(2R,3S,4R)-flavan-3,3′,4′,5,7-pentol]-(4→8)-[(2R,3S)-flavan-3,3′,4′,5,7-pentol] | |
Preferred IUPAC name (12R,13S,14S,22R,23S,24R,32R,33S)-12,22,32-Tris(3,4-dihydroxyphenyl)-13,14,23,24,33,34-hexahydro-12H,22H,32H-[14,28:24,38-ter-1-benzopyran]-13,15,17,23,25,27,33,35,37-nonol | |
Other names C-(4,8)-C-(4,8)-C Procyanidin trimer C2 Catechin-(4alpha→8)-Catechin-(4alpha→8)-Catechin Catechin-(4α→8)-catechin-(4α→8)-catechin Trimer C2 | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
PubChem CID | |
| |
| |
Properties | |
C45H38O18 | |
Molar mass | 866.74 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Procyanidin C2 is a B type proanthocyanidin trimer, a type of condensed tannin.
Procyanidin C2 is found in grape seeds (Vitis vinifera) [1] [2] and wine, [3] in barley (Hordeum vulgare), [4] malt [5] and beer, [6] in Betula spp., in Pinus radiata , in Potentilla viscosa , in Salix caprea or in Cryptomeria japonica . [7] [8] [9]
The contents in barley grain of trimeric proanthocyanidins, including procyanidin C2, range from 53 to 151 μg catechin equivalents/g. [10]
Proanthocyanidin oligomers, extracted from grape seeds, have been used for the experimental treatment of androgenic alopecia. When applied topically, they promote hair growth in vitro, and induce anagen in vivo. Procyanidin C2 is the subtype of extract most effective. [11]
Experiments showed that both procyanidin C2 and Pycnogenol (French maritime pine bark extract) increase TNF-α secretion in a concentration- and time-dependent manner. These results demonstrate that procyanidins act as modulators of the immune response in macrophages. [12]
In the presence of procyanidin C2, the red color of the anthocyanin oenin appears more stable. However, the HPLC chromatogram shows a decrease in the amplitude of the peaks of oenin and procyanidin C2. Concomitantly, a new peak appears with a maximal absorption in the red region. This newly formed pigment probably comes from the condensation of oenin and procyanidin C2. [13]
A stereoselective synthesis of benzylated catechin trimer under intermolecular condensation is achieved using equimolar amount of dimeric catechin nucleophile and monomeric catechin electrophile catalyzed by AgOTf or AgBF4. The coupled product can be transformed into procyanidin C2 by a known procedure. [14]
The stereoselective synthesis of seven benzylated proanthocyanidin trimers (epicatechin-(4β-8)-epicatechin-(4β-8)-epicatechin trimer (procyanidin C1), catechin-(4α-8)-catechin-(4α-8)-catechin trimer (procyanidin C2), epicatechin-(4β-8)-epicatechin-(4β-8)-catechin trimer and epicatechin-(4β-8)-catechin-(4α-8)-epicatechin trimer derivatives) can be achieved with TMSOTf-catalyzed condensation reaction, in excellent yields. The structure of benzylated procyanidin C2 was confirmed by comparing the 1H NMR spectra of protected procyanidin C2 that was synthesized by two different condensation approaches. Finally, deprotection of (+)-catechin and (−)-epicatechin trimers derivatives gives four natural procyanidin trimers in good yields. [15]
Molar equivalents of synthetic (2R,3S,4R or S)-leucocyanidin and (+)-catechin condense with exceptional rapidity at pH 5 under ambient conditions to give the all-trans-[4,8]- and [4,6]-bi-[(+)-catechins] (procyanidins B3, B6) the all-trans-[4,8:4,8]- and [4,8:4,6]-tri-[(+)-catechins] (procyanidin C2 and isomer). [16]
A coupling utilising a C8-boronic acid as a directing group was developed in the synthesis of natural procyanidin B3 (i.e., 3,4-trans-(+)-catechin-4α→8-(+)-catechin dimer). The key interflavan bond is forged using a Lewis acid-promoted coupling of C4-ether with C8-boronic acid to provide the α-linked dimer with high diastereoselectivity. Through the use of a boron protecting group, the coupling procedure can be extended to the synthesis of a protected procyanidin trimer analogous to natural procyanidin C2. [17]
Flavan-3-ols are a subgroup of flavonoids. They are derivatives of flavans that possess a 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. Flavan-3-ols are structurally diverse and include a range of compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins. They play a part in plant defense and are present in the majority of plants.
Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.
Proanthocyanidins are a class of polyphenols found in many plants, such as cranberry, blueberry, and grape seeds. Chemically, they are oligomeric flavonoids. Many are oligomers of catechin and epicatechin and their gallic acid esters. More complex polyphenols, having the same polymeric building block, form the group of tannins.
Procyanidins are members of the proanthocyanidin class of flavonoids. They are oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions.
The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.
Prodelphinidin is a name for the polymeric tannins composed of gallocatechin. It yields delphinidin during depolymerisation under oxidative conditions.
Prodelphinidin B3 is a prodelphinidin dimer found in food products such as barley and beer, in fruits and pod vegetables. It can also be found in pomegranate peels.
Leucocyanidin is a colorless chemical compound that is a member of the class of natural products known as leucoanthocyanidins.
Oenin is an anthocyanin. It is the 3-glucoside of malvidin. It is one of the red pigments found in the skin of purple grapes and in wine.
Procyanidin B2 is a B type proanthocyanidin. Its structure is (−)-Epicatechin-(4β→8)-(−)-epicatechin.
A type proanthocyanidins are a specific type of proanthocyanidins, which are a class of flavonoid. Proanthocyanidins fall under a wide range of names in the nutritional and scientific vernacular, including oligomeric proanthocyanidins, flavonoids, polyphenols, condensed tannins, and OPCs. Proanthocyanidins were first popularized by French scientist Jacques Masquelier.
Procyanidin B1 is a procyanidin dimer.
Procyanidin B3 is a B type proanthocyanidin. Procyanidin B3 is a catechin dimer.
Procyanidin B4 is a B type proanthocyanidin.
Procyanidin B5 is a B type proanthocyanidin.
Procyanidin B6 is a B type proanthocyanidin.
Procyanidin B8 is a B type proanthocyanidin.
Procyanidin C1 (PCC1) is a B type proanthocyanidin. It is an epicatechin trimer found in grape, unripe apples, and cinnamon.
Condensed tannins are polymers formed by the condensation of flavans. They do not contain sugar residues.
B type proanthocyanidins are a specific type of proanthocyanidin, which are a class of flavanoids. They are oligomers of flavan-3-ols.
{{cite journal}}
: CS1 maint: DOI inactive as of February 2024 (link)