Puccinia menthae | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Basidiomycota |
Class: | Pucciniomycetes |
Order: | Pucciniales |
Family: | Pucciniaceae |
Genus: | Puccinia |
Species: | P. menthae |
Binomial name | |
Puccinia menthae Pers. (1801) [1] | |
Synonyms | |
|
Puccinia menthae is a fungal plant pathogen that causes rust on mint plants. It was originally found on the leaves of Mentha aquatica . [2]
Puccinia menthae feeds on plants in the family Lamiaceae. Commonly, there are two groups of mint rust, spearmint rust and peppermint rust. [3] [4] The strain of P. menthae that infects peppermint is not able to infect spearmint plants and the strain that infects spearmint cannot infect peppermint, but both can infect Scotch spearmint. [5] In a study done by Stiles et al., it was found that a P. menthae isolate found on oregano could infect oregano, Greek oregano, and sweet marjoram but could not infect spearmint species. [6] Stiles obtained another rust isolate from spearmint and found it did not infect oregano or related species. This suggests the strains of P. menthae are host specific within the plant family Lamiaceae. More research is required to determine more information regarding the degree host specificity of P. menthae.
In the early stages of the disease, P. menthae creates chlorotic spots on the upper side of the leaves and orange urediospores form blister-like structures on the underside of the leaves. As the season progresses, the spots turn into brown pustules, teliospores, surrounded by a chlorotic halo. [5] Leaves will often drop off the plant. Mature aecial spores develop from spermogonia and cause hypertrophy, twisting, and distortion in young peppermint shoots. [7]
Puccinia menthae is an autoecious macrocyclic rust. [7] This species of rust has all 4 of the rust spores; teliospores, basidiospores, aeciospores, and urediospores. [7]
Teliospores: Teliospores are produced from May to December on leaves, stems, or rhizomes of mint host. They are ellipsoidal, with slightly projecting caps, slightly constricted at septum and are 22-30 x 17-24 μm. [8] This is the overwintering structure. They require a period of dormancy before they are able to germinate into basidiospores. This period of dormancy needs to be a minimum of 12 days. [9] The teliospores then produce basidiospores under right environmental conditions.
Basidiospores: Basidiospores will infect young mint plants in December and January. They create small red blisters on foliar tissue that are 1–3 mm in diameter. The development of spermogonia and aecia requires warmer temperatures ~20 °C and greatly inhibited by colder temperatures. [7] Basidiospores produce aeciospores.
Aeciospores: These spores are spheroidal or ellipsoidal, 18-28 μm in diameter. [8] The heaviest production of aeciospores occurs during March and April. The incubation period required to produce urediospores varies around 15 days in greenhouse conditions and in field conditions the incubation period was longer with more variability. [7] Initial spread of aeciospores is limited to a few feet. [7] Aeciospores produce urediospores.
Urediospores: Urediospores are ellipsoidal or obovoidal, 22-26 x 18-22 μm. [8] These spores are released starting in April and May and are unable to overwinter in the field. Moisture heavily influences this stage of the life cycle as high humidity confers an infection of urediospores. Urediospores germinate and form haustoria that penetrates into the leaves. [10] Urediospore sori is produced on the undersides of the host leaves and are protected from solar radiation. [7] Urediospores are capable of germinating over a range of 5- 30 °C with the optimal temperature of ~20 °C. [11] P. menthae germ-tube penetration has an optimum temperature range of 10-20 °C. [11] Urediospores lead to the production of teliospores.
Mint rust can result in significant reduction in the agricultural yield of different species of mint, including peppermint, spearmint, scotch mint, and Japanese field mint. P. menthae infection of spearmint crop can result a 70% yield loss. [12] Mint production is part of the economy in many communities all over the world. A significant reduction in yield can result in a loss of income for mint growers.
In Wisconsin 86% of the peppermint growers and 90% of the spearmint growers reported a problem with mint rust. [13]
Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.
Teliospore is the thick-walled resting spore of some fungi, from which the basidium arises.
Loose smut of barley is caused by Ustilago nuda. It is a disease that can destroy a large proportion of a barley crop. Loose smut replaces grain heads with smut, or masses of spores which infect the open flowers of healthy plants and grow into the seed, without showing any symptoms. Seeds appear healthy and only when they reach maturity the following season is it clear that they were infected. Systemic fungicides are the major control method for loose smut.
Gymnosporangium globosum is a fungal plant pathogen that causes cedar-hawthorn rust.
Gymnosporangium juniperi-virginianae is a plant pathogen that causes cedar-apple rust. In virtually any location where apples or crabapples (Malus) and eastern red cedar coexist, cedar apple rust can be a destructive or disfiguring disease on both the apples and cedars. Apples, crabapples, and eastern red cedar are the most common hosts for this disease. Similar diseases can be found on quince and hawthorn and many species of juniper can substitute for the eastern red cedars.
Puccinia schedonnardii is a basidiomycete fungus that affects cotton. More commonly known as a “rust,” this pathogen typically affects cotton leaves, which can decrease the quality of the boll at time of harvest. As large percentages of cotton in the United States are resistant to various rust varieties, there is little economic importance to this disease. In places where rust is prevalent, however, growers could see up to a 50% reduction in yield due to rust infection.
Urocystis agropyri is a fungal plant pathogen that causes flag smut on wheat.
Puccinia asparagi is the causative agent of asparagus rust. It is an autoecious fungus, meaning that all stages of its life cycle – pycniospores, aeciospores, and teliospores – all develop upon the same host plant . Rust diseases are among the most destructive plant diseases, known to cause famine following destruction of grains, vegetables, and legumes. Asparagus rust occurs wherever the plant is grown and attacks asparagus plants during and after the cutting season. Asparagus spears are usually harvested before extensive rust symptoms appear. Symptoms are first noticeable on the growing shoots in early summer as light green, oval lesions, followed by tan blister spots and black, protruding blisters later in the season. The lesions are symptoms of Puccinia asparagi during early spring, mid-summer and later summer to fall, respectively. Severe rust infections stunt or kill young asparagus shoots, causing foliage to fall prematurely, and reduce the ability of the plant to store food reserves. The Puccinia asparagi fungus accomplishes this by rust lowering the amounts of root storage metabolites. The infected plant has reduced plant vigor and yield, often leading to death in severe cases. Most rust diseases have several stages, some of which may occur on different hosts; however, in asparagus rust all the life stages occur on asparagus. Because of this, many observers mistake the different stages of the Puccinia asparagi life cycle as the presence of different diseases. The effects of Puccinia asparagi are present worldwide wherever asparagus is being grown. Asparagus rust is a serious threat to the asparagus industry.
Puccinia coronata is a plant pathogen and causal agent of oat and barley crown rust. The pathogen occurs worldwide, infecting both wild and cultivated oats. Crown rust poses a threat to barley production, because the first infections in barley occur early in the season from local inoculum. Crown rusts have evolved many different physiological races within different species in response to host resistance. Each pathogenic race can attack a specific line of plants within the species typical host. For example, there are over 290 races of P. coronata. Crops with resistant phenotypes are often released, but within a few years virulent races have arisen and P. coronata can infect them.
Puccinia helianthi is a macrocyclic and autoecious fungal plant pathogen that causes rust on sunflower. It is also known as "common rust" and "red rust" of sunflower.
Uromyces viciae-fabae var. viciae-fabae is a plant pathogen commonly known as faba-bean rust. The rust is distinguished by the typical rust-like marks on the stem and leaves, causing defoliation and loss of photosynthetic surface along with reduction in yield. The disease is fungal and is autoecious meaning it has one plant host. The rust of faba beans is macrocyclic, or contains 5 spores during its life cycle.
Puccinia monoica is a parasitic rust fungus of the genus Puccinia that inhibits flowering in its host plant and radically transforms host morphology in order to facilitate its own sexual reproduction.
Puccinia horiana is a species of fungus that causes chrysanthemum white rust, is a disease of plant species of the genus Chrysanthemum.
Austropuccinia is a monotypic genus of rust native to South America with the only species Austropuccinia psidii, commonly known as myrtle rust, guava rust, or ʻōhiʻa rust. It affects plants in the family Myrtaceae. It is a member of the fungal complex called the guava rust group. The spores have a distinctive yellow to orange colour, occasionally encircled by a purple ring. They are found on lesions on new growth including shoots, leaves, buds and fruits. Leaves become twisted and may die. Infections in highly susceptible species may result in the death of the host plant.
Telium, plural telia, are structures produced by rust fungi as part of the reproductive cycle. They are typically yellow or orange drying to brown or black and are exclusively a mechanism for the release of teliospores which are released by wind or water to infect the alternate host in the rust life-cycle. The telial stage provides an overwintering strategy in the life cycle of a parasitic heteroecious fungus by producing teliospores; this occurs on cedar trees. A primary aecial stage is spent parasitizing a separate host plant which is a precursor in the life cycle of heteroecious fungi. Teliospores are released from the telia in the spring. The spores can spread many kilometers through the air, however most are spread near the host plant.
Puccinia mariae-wilsoniae, commonly known as the spring beauty rust, is a species of rust fungus found in North America. A plant pathogen, it grows on the leaves of the spring beauty flowering plants Claytonia caroliniana and C. virginica.
Spruce broom rust or yellow witches' broom rust is a fungal plant disease caused by the basidiomycete fungus known as Chrysomyxa arctostaphyli. It occurs exclusively in North America, with the most concentrated outbreaks occurring in northern Arizona and southern Colorado on blue and Engelmann spruce, as well as in Alaska on black and white spruce. This disease alternates its life cycle between two hosts, with the spruce serving as the primary host and bearberry serving as the secondary or alternate host. The name for the disease comes from the distinctive “witches broom”, commonly yellow in color, which forms on the spruce after young needles have been infected. Management must be carried out through physical or mechanical methods, such as the pruning of brooms or the removal of the secondary host from the area, because no chemical control measures have yet been determined to be economically effective. Generally, spruce broom rust is seen as a mostly cosmetic issue, and it is very rarely the direct cause of tree death; however, research has shown a reduction in overall productivity and health of infected trees, making it an important issue for logging and timber companies.
Puccinia libanotidis, common name moon carrot rust, is a species of rust that infects the moon carrot, Seseli libanotis. It is restricted to the same range as its host plant across Eurasia.
Phakopsora euvitis is a rust fungus that causes disease of grape leaves. This rust fungus has been seen in regions including: Eastern Asia, Southern Asia, Southwestern Brazil, the Americas, and northern Australia. It is widely distributed in eastern and southern Asia but was first discovered on grapevines in Darwin, Australia in 2001 and was identified as Asian grapevine leaf rust by July 2007.
Puccinia sorghi, or common rust of maize, is a species of rust fungus that infects corn and species from the plant genus Oxalis.