Quantum triviality

Last updated

In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions, [1] [2] but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance.

Contents

This Higgs triviality is similar to the Landau pole problem in quantum electrodynamics, where this quantum theory may be inconsistent at very high momentum scales unless the renormalized charge is set to zero, i.e., unless the field theory has no interactions. The Landau pole question is generally considered to be of minor academic interest for quantum electrodynamics because of the inaccessibly large momentum scale at which the inconsistency appears. This is not however the case in theories that involve the elementary scalar Higgs boson, as the momentum scale at which a "trivial" theory exhibits inconsistencies may be accessible to present experimental efforts such as at the Large Hadron Collider (LHC) at CERN. In these Higgs theories, the interactions of the Higgs particle with itself are posited to generate the masses of the W and Z bosons, as well as lepton masses like those of the electron and muon. If realistic models of particle physics such as the Standard Model suffer from triviality issues, the idea of an elementary scalar Higgs particle may have to be modified or abandoned.

The situation becomes more complex in theories that involve other particles however. In fact, the addition of other particles can turn a trivial theory into a nontrivial one, at the cost of introducing constraints. Depending on the details of the theory, the Higgs mass can be bounded or even calculable. [2] These quantum triviality constraints are in sharp contrast to the picture one derives at the classical level, where the Higgs mass is a free parameter. Quantum triviality can also lead to a calculable Higgs mass in asymptotic safety scenarios. [2]

Triviality and the renormalization group

Modern considerations of triviality are usually formulated in terms of the real-space renormalization group, largely developed by Kenneth Wilson and others. Investigations of triviality are usually performed in the context of lattice gauge theory. A deeper understanding of the physical meaning and generalization of the renormalization process, which goes beyond the dilatation group of conventional renormalizable theories, came from condensed matter physics. Leo P. Kadanoff's paper in 1966 proposed the "block-spin" renormalization group. [3] The blocking idea is a way to define the components of the theory at large distances as aggregates of components at shorter distances.

This approach covered the conceptual point and was given full computational substance [4] in Wilson's extensive important contributions. The power of Wilson's ideas was demonstrated by a constructive iterative renormalization solution of a long-standing problem, the Kondo problem, in 1974, as well as the preceding seminal developments of his new method in the theory of second-order phase transitions and critical phenomena in 1971[ citation needed ]. He was awarded the Nobel prize for these decisive contributions in 1982.

In more technical terms, let us assume that we have a theory described by a certain function of the state variables and a certain set of coupling constants . This function may be a partition function, an action, a Hamiltonian, etc. It must contain the whole description of the physics of the system.

Now we consider a certain blocking transformation of the state variables , the number of must be lower than the number of . Now let us try to rewrite the function only in terms of the . If this is achievable by a certain change in the parameters, , then the theory is said to be renormalizable. The most important information in the RG flow are its fixed points. The possible macroscopic states of the system, at a large scale, are given by this set of fixed points. If these fixed points correspond to a free field theory, the theory is said to be trivial. Numerous fixed points appear in the study of lattice Higgs theories, but the nature of the quantum field theories associated with these remains an open question. [2]

Historical background

The first evidence of possible triviality of quantum field theories was obtained by Landau, Abrikosov, and Khalatnikov [5] [6] [7] by finding the following relation of the observable charge gobs with the "bare" charge g0,

where m is the mass of the particle, and Λ is the momentum cut-off. If g0 is finite, then gobs tends to zero in the limit of infinite cut-off Λ.

In fact, the proper interpretation of Eq.1 consists in its inversion, so that g0 (related to the length scale 1/Λ) is chosen to give a correct value of gobs,

The growth of g0 with Λ invalidates Eqs. ( 1 ) and ( 2 ) in the region g0 ≈ 1 (since they were obtained for g0 ≪ 1) and the existence of the "Landau pole" in Eq.2 has no physical meaning.

The actual behavior of the charge g(μ) as a function of the momentum scale μ is determined by the full Gell-Mann–Low equation

which gives Eqs.( 1 ),( 2 ) if it is integrated under conditions g(μ) = gobs for μ = m and g(μ) = g0 for μ = Λ, when only the term with is retained in the right hand side.

The general behavior of relies on the appearance of the function β(g). According to the classification by Bogoliubov and Shirkov, [8] there are three qualitatively different situations:

  1. if has a zero at the finite value g*, then growth of g is saturated, i.e. for ;
  2. if is non-alternating and behaves as with for large , then the growth of continues to infinity;
  3. if with for large , then is divergent at finite value and the real Landau pole arises: the theory is internally inconsistent due to indeterminacy of for .

The latter case corresponds to the quantum triviality in the full theory (beyond its perturbation context), as can be seen by reductio ad absurdum. Indeed, if gobs is finite, the theory is internally inconsistent. The only way to avoid it, is to tend to infinity, which is possible only for gobs → 0.

Conclusions

As a result, the question of whether the Standard Model of particle physics is nontrivial remains a serious unresolved question. Theoretical proofs of triviality of the pure scalar field theory exist, but the situation for the full standard model is unknown. The implied constraints on the standard model have been discussed. [9] [10] [11] [12] [13] [14]

See also

Related Research Articles

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Renormalization</span> Method in physics used to deal with infinities

Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all cuprates.

In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.

<span class="mw-page-title-main">Coupling constant</span> Parameter describing the strength of a force

In physics, a coupling constant or gauge coupling parameter, is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.

In physics, the Landau pole is the momentum scale at which the coupling constant of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues in 1954. The fact that couplings depend on the momentum scale is the central idea behind the renormalization group.

<span class="mw-page-title-main">Beta function (physics)</span> Function that encodes the dependence of a coupling parameter on the energy scale

In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as

In field theory, the Stueckelberg action describes a massive spin-1 field as an R Yang–Mills theory coupled to a real scalar field . This scalar field takes on values in a real 1D affine representation of R with as the coupling strength.

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is between a scalar field ϕ and a Dirac field ψ of the type

In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

In theoretical physics, scalar electrodynamics is a theory of a U(1) gauge field coupled to a charged spin 0 scalar field that takes the place of the Dirac fermions in "ordinary" quantum electrodynamics. The scalar field is charged, and with an appropriate potential, it has the capacity to break the gauge symmetry via the Abelian Higgs mechanism.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The Coleman–Weinberg model represents quantum electrodynamics of a scalar field in four-dimensions. The Lagrangian for the model is

In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model.

References

  1. R. Fernandez; J. Froehlich; A. D. Sokal (1992). Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer. ISBN   0-387-54358-9.
  2. 1 2 3 4 D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports . 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
  3. L.P. Kadanoff (1966): "Scaling laws for Ising models near ", Physics (Long Island City, N.Y.) 2, 263.
  4. K.G. Wilson(1975): The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47, 4, 773.
  5. L. D. Landau; A. A. Abrikosov; I. M. Khalatnikov (1954). "On the Elimination of Infinities in Quantum Electrodynamics". Doklady Akademii Nauk SSSR . 95: 497.
  6. L. D. Landau; A. A. Abrikosov & I. M. Khalatnikov (1954). "Asymptotic Expressin for the Green's Function of the Electron in Quantum Electrodynamics". Doklady Akademii Nauk SSSR . 95: 773.
  7. L. D. Landau; A. A. Abrikosov & I. M. Khalatnikov (1954). "Asymptotic Expressin for the Green's Function of the Photon in Quantum Electrodynamics". Doklady Akademii Nauk SSSR . 95: 1177.
  8. N. N. Bogoliubov; D. V. Shirkov (1980). Introduction to the Theory of Quantized Fields (3rd ed.). John Wiley & Sons. ISBN   978-0-471-04223-5.
  9. Callaway, D.; Petronzio, R. (1987). "Is the standard model Higgs mass predictable?". Nuclear Physics B . 292: 497–526. Bibcode:1987NuPhB.292..497C. doi:10.1016/0550-3213(87)90657-2.
  10. I. M. Suslov (2010). "Asymptotic Behavior of the β Function in the φ4 Theory: A Scheme Without Complex Parameters". Journal of Experimental and Theoretical Physics . 111 (3): 450–465. arXiv: 1010.4317 . Bibcode:2010JETP..111..450S. doi:10.1134/S1063776110090153. S2CID   118545858.
  11. Frasca, Marco (2011). Mapping theorem and Green functions in Yang-Mills theory (PDF). The many faces of QCD. Trieste: Proceedings of Science. p. 039. arXiv: 1011.3643 . Bibcode:2010mfq..confE..39F . Retrieved 2011-08-27.
  12. Callaway, D. J. E. (1984). "Non-triviality of gauge theories with elementary scalars and upper bounds on Higgs masses". Nuclear Physics B. 233 (2): 189–203. Bibcode:1984NuPhB.233..189C. doi:10.1016/0550-3213(84)90410-3.
  13. Lindner, M. (1986). "Implications of triviality for the standard model". Zeitschrift für Physik C . 31 (2): 295–300. Bibcode:1986ZPhyC..31..295L. doi:10.1007/BF01479540. S2CID   123166350.
  14. Urs Heller, Markus Klomfass, Herbert Neuberger, and Pavlos Vranas, (1993). "Numerical analysis of the Higgs mass triviality bound", Nucl. Phys., B405: 555-573.