Quinuclidine

Last updated
Quinuclidine [1]
Skeletal formula of quinuclidine Quinuclidine.svg
Skeletal formula of quinuclidine
Ball-and-stick model of quinuclidine Quinuclidine 3D.png
Ball-and-stick model of quinuclidine
Names
Preferred IUPAC name
1-Azabicyclo[2.2.2]octane [2]
Other names
Quinuclidine [2]
Identifiers
3D model (JSmol)
103111
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.625 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-887-1
26726
PubChem CID
UNII
  • InChI=1S/C7H13N/c1-4-8-5-2-7(1)3-6-8/h7H,1-6H2 Yes check.svgY
    Key: SBYHFKPVCBCYGV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H13N/c1-4-8-5-2-7(1)3-6-8/h7H,1-6H2
    Key: SBYHFKPVCBCYGV-UHFFFAOYAA
  • N12CCC(CC1)CC2
Properties
C7H13N
Molar mass 111.188 g·mol−1
Density 0.97 g/cm3
Melting point 157 to 160 °C (315 to 320 °F; 430 to 433 K)
Boiling point 149.5 °C (301.1 °F; 422.6 K) at 760 mmHg
Acidity (pKa)11.0 (conjugate acid)
Hazards
GHS labelling: [3]
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H301, H310, H315, H318
P262, P264, P264+P265, P270, P280, P301+P316, P302+P352, P305+P354+P338, P316, P317, P321, P330, P332+P317, P361+P364, P362+P364, P405, P501
Flash point 36.5 °C (97.7 °F; 309.6 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Quinuclidine is an organic compound with the formula HC(C2H4)3N. It is a bicyclic amine that can be viewed as a tied back version of triethylamine. It is a colorless solid. It is used as a reagent (base) and catalyst. It can be prepared by reduction of quinuclidone and has great utility in the Cormas-Grisius Electrophilic Benzene Addition reaction. When protonated, Quinuclidine's heterocyclic structure allows its amine group to serve as a strong electrophile in the Cormas-Grisius Electrophilic Benzene Addition.

Contents

Structure and chemical properties

Regarding its structure, quinuclidine is unusual in that the methylene hydrogen atoms are eclipsed within each of the three ethylene linkages. Furthermore, the cyclohexane rings, of which there are three, adopt the boat conformations, not the usual chair conformations. [4]

Quinuclidine is a relatively strong organic base with pKa of the conjugate acid of 11.3. [5] The basicity of other quinuclidines have been evaluated: 3-hydroxy- quinuclidine (9.9), 3-acetoxyquinuclidine (9.3), 3-chloroquinuclidine (8.9), DABCO (8.7), and 3-quinuclidone (7.2). [6]

It forms adducts with a variety of Lewis acids. Because of its compact structure, quinuclidine binds to trimethylborane more tightly than does triethylamine. [7]

Derivatives and analogues

Quinine is a quinuclidine derivative. Quinine structure.png
Quinine is a quinuclidine derivative.

Quinuclidine is structurally related to DABCO, in which the other bridgehead is also nitrogen, and to tropane, which has a slightly different carbon frame. Cinchona alkaloids, e.g. quinine, feature quinuclidine substituents. [7] Aceclidine, a simple quinuclidine derivative, is a drug used for treatment of glaucoma.

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.

<span class="mw-page-title-main">Indazole</span> Chemical compound

Indazole, also called isoindazole, is a heterocyclic aromatic organic compound. This bicyclic compound consists of the fusion of benzene and pyrazole.

<span class="mw-page-title-main">Oxazole</span> Chemical compound

Oxazole is the parent compound for a vast class of heterocyclic aromatic organic compounds. These are azoles with an oxygen and a nitrogen separated by one carbon. Oxazoles are aromatic compounds but less so than the thiazoles. Oxazole is a weak base; its conjugate acid has a pKa of 0.8, compared to 7 for imidazole.

In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.

An isocyanide is an organic compound with the functional group –N+≡C. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.

<span class="mw-page-title-main">DABCO</span> Chemical compound

DABCO (1,4-diazabicyclo[2.2.2]octane), also known as triethylenediamine or TEDA, is a bicyclic organic compound with the formula N2(C2H4)3. This colorless solid is a highly nucleophilic tertiary amine base, which is used as a catalyst and reagent in polymerization and organic synthesis.

<i>N</i>,<i>N</i>-Diisopropylethylamine Chemical compound

N,N-Diisopropylethylamine, or Hünig's base, is an organic compound that is a tertiary amine. It is named after the German chemist Siegfried Hünig. It is used in organic chemistry as a non-nucleophilic base. It is commonly abbreviated as DIPEA,DIEA, or i-Pr2NEt.

In organic chemistry, umpolung or polarity inversion is the chemical modification of a functional group with the aim of the reversal of polarity of that group. This modification allows secondary reactions of this functional group that would otherwise not be possible. The concept was introduced by D. Seebach and E.J. Corey. Polarity analysis during retrosynthetic analysis tells a chemist when umpolung tactics are required to synthesize a target molecule.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

<span class="mw-page-title-main">Phthalaldehyde</span> Chemical compound

Phthalaldehyde (sometimes also o-phthalaldehyde or ortho-phthalaldehyde, OPA) is the chemical compound with the formula C6H4(CHO)2. It is one of three isomers of benzene dicarbaldehyde, related to phthalic acid. This pale yellow solid is a building block in the synthesis of heterocyclic compounds and a reagent in the analysis of amino acids. OPA dissolves in water solution at pH < 11.5. Its solutions degrade upon UV illumination and exposure to air.

The Stieglitz rearrangement is a rearrangement reaction in organic chemistry which is named after the American chemist Julius Stieglitz (1867–1937) and was first investigated by him and Paul Nicholas Leech in 1913. It describes the 1,2-rearrangement of trityl amine derivatives to triaryl imines. It is comparable to a Beckmann rearrangement which also involves a substitution at a nitrogen atom through a carbon to nitrogen shift. As an example, triaryl hydroxylamines can undergo a Stieglitz rearrangement by dehydration and the shift of a phenyl group after activation with phosphorus pentachloride to yield the respective triaryl imine, a Schiff base.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

Electrophilic amination is a chemical process involving the formation of a carbon–nitrogen bond through the reaction of a nucleophilic carbanion with an electrophilic source of nitrogen.

References

  1. Quinuclidine Archived October 15, 2007, at the Wayback Machine at Sigma-Aldrich
  2. 1 2 Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 169. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4. The name quinuclidine is retained for general nomenclature only (see Table 2.6).
  3. "Quinuclidine". pubchem.ncbi.nlm.nih.gov.
  4. Blackstock, S. C.; Lorand, J. P.; Kochi, J. K. (1987). "Charge-Rransfer Interactions of Amines with Tetrahalomethanes. X-Ray Crystal Structures of the Donor-Acceptor Complexes of Quinuclidine and Diazabicyclo [2.2.2]Octane with Carbon Tetrabromide". The Journal of Organic Chemistry. 52 (8): 1451–1460. doi:10.1021/jo00384a013.
  5. Hext, N. M.; Hansen, J.; Blake, A. J.; Hibbs, D. E.; Hursthouse, M. B.; Shishkin, O. V.; Mascal, M. (1998). "Azatriquinanes: Synthesis, Structure, and Reactivity". J. Org. Chem. 63 (17): 6016–6020. doi:10.1021/jo980788s. PMID   11672206.
  6. Aggarwal, Varinder K.; Emme, Ingo; Fulford, Sarah Y. (2003). "Correlation between pKa and Reactivity of Quinuclidine-Based Catalysts in the Baylis−Hillman Reaction: Discovery of Quinuclidine as Optimum Catalyst Leading to Substantial Enhancement of Scope". The Journal of Organic Chemistry. 68 (3): 692–700. doi:10.1021/jo026671s. PMID   12558387.
  7. 1 2 Hamama, Wafaa S.; El-Magid, Osama. M. Abd; Zoorob, Hanafi H. (2006). "Chemistry of quinuclidines as nitrogen bicyclic bridged-ring structures". Journal of Heterocyclic Chemistry. 43 (6): 1397–1420. doi: 10.1002/jhet.5570430601 .