SKI protein

Last updated
SKI
Protein SKI PDB 1mr1.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SKI , SKI proto-oncogene, SGS, SKV
External IDs OMIM: 164780 MGI: 98310 HomoloGene: 31124 GeneCards: SKI
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003036

NM_011385
NM_001357191

RefSeq (protein)

NP_003027

n/a

Location (UCSC) Chr 1: 2.23 – 2.31 Mb Chr 4: 155.24 – 155.31 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The SKI protein is a nuclear proto-oncogene that is associated with tumors at high cellular concentrations. [5] SKI has been shown to interfere with normal cellular functioning by both directly impeding expression of certain genes inside the nucleus of the cell as well as disrupting signaling proteins that activate genes. [6]

Contents

SKI negatively regulates transforming growth factor-beta (TGF-beta) by directly interacting with Smads and repressing the transcription of TGF-beta responsive genes. [7] This has been associated with cancer due to the large number of roles that peptide growth factors, of which TGF-beta are a subfamily, play in regulating cellular functions such as cell proliferation, apoptosis, specification, and developmental fate. [8]

The name SKI comes from the Sloan-Kettering Institute where the protein was initially discovered.

Structure

Gene

The SKI proto-oncogene is located at a region close to the p73 tumor suppressor gene at the locus 1p36.3 locus of a gene, suggesting a similar function to the p73 gene. [9]

Protein

Crystal structure of the Dachshund-homology domain of human SKI. 1sbx asym r 250b.jpg
Crystal structure of the Dachshund-homology domain of human SKI.

The SKI protein has a 728 amino acid sequence, with multiple domains. It is expressed both inside and outside of the nucleus. [9] It is in the same family as the SnoN protein. The different domains have different functions, with the primary domains interacting with Smad proteins. The protein has a helix-turn-helix motif, a cysteine and histidine rich area which gives rise to the zinc finger motif, a basic amino acid region, and leucine zipper. All these domains, including a proline rich region, are consistent with the fact that the protein must have domains that allow it to interact with other proteins. [9] The protein also has hydrophobic regions which come into contact with Smad proteins rich in leucine and phenylalanine amino acid regions. [11] Recent studies have suggested a domain similar to the Dachshund protein. The SKI-Dachshund homology domain (SKI-DHD) contains the helix turn helix domains of the protein and the beta-alpha-beta turn motifs. [7]

Function

The SKI oncogene is present in all cells, and is commonly active during development. Specifically, avian fibroblasts depend on the SKI protein as a transcription co-regulator inducing transformation. [9] The aforementioned DHD region is specifically employed for protein-protein interactions, while the 191 amino acid C terminus mediates oligomerization. [7] Recent research shows that the SKI protein in cancerous cells acts as a suppressor, inhibiting transforming growth factor β (TGF- β) signaling. TGF- β is a protein which regulates cell growth. Signaling is regulated by a family of proteins called the Smad proteins. SKI is present in all adult and embryonic cells at low levels, however an over expression of the protein is characteristic of tumor cells. [11] It is thought that high levels of SKI protein inactivate tumor suppression by displacement of other proteins and interference with the signaling pathway of TGF- β. [9] The SKI protein and the CPB protein compete for binding with the Smad proteins, specifically competing with the Smad-3 and CReB-binding protein interactions. SKI also directly interacts with the R-Smad ∙ Smad-4 complex, which directly represses normal transcription of the TGF-β responsive genes, inactivating the cell's ability to stop growth and division, creating cancerous cells. [11]

SKI has been linked to various cancers including human melanomas, esophageal squamous cell carcinoma, cervical cancer and the process of tumor progression. The link of SKI with human melanoma has been the most studied area of the protein's link to cancer. Currently it is thought that the SKI protein prevents response to TFG- β levels, causing tumor formation. [9]

Other research has identified proteins similar to Ski. The SnoN protein was identified as a similar protein and is often discussed in conjugation with the Ski protein in publications. Recent research suggests that the role of SnoN could be somewhat different, and could potentially even play an antagonistic role. [12]

Other recent studies have determined Fussel-15 and Fussel-18 to be homologous to the Ski/Sno family of proteins. Fussel-15 has been found to play much the same role as the Ski/Sno proteins, however its expression is not as ubiquitous as the Ski/Sno proteins. Fussel-18 has been found to have an inhibitory role in the TGF-beta signaling. [13]

Dachshund and SKIDA1 are also in the Ski/Sno/Dac family (InterPro :  IPR003380 , IPR023216 . [14]

Interactions

SKI protein has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">EP300</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 2 also known as SMAD family member 2 or SMAD2 is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 6</span> Protein-coding gene in the species Homo sapiens

SMAD family member 6, also known as SMAD6, is a protein that in humans is encoded by the SMAD6 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 7</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.

Smads comprise a family of structurally similar proteins that are the main signal transducers for receptors of the transforming growth factor beta (TGF-B) superfamily, which are critically important for regulating cell development and growth. The abbreviation refers to the homologies to the Caenorhabditis elegans SMA and MAD family of genes in Drosophila.

<span class="mw-page-title-main">ACVR1B</span> Protein-coding gene in the species Homo sapiens

Activin receptor type-1B is a protein that in humans is encoded by the ACVR1B gene.

<span class="mw-page-title-main">JUNB</span> Protein-coding gene in the species Homo sapiens

Transcription factor jun-B is a protein that in humans is encoded by the JUNB gene. Transcription factor jun-B is a transcription factor involved in regulating gene activity following the primary growth factor response. It binds to the DNA sequence 5'-TGA[CG]TCA-3'.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">Activating transcription factor 2</span> Protein-coding gene in the species Homo sapiens

Activating transcription factor 2, also known as ATF2, is a protein that, in humans, is encoded by the ATF2 gene.

<span class="mw-page-title-main">Protein inhibitor of activated STAT2</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS2 is an enzyme that in humans is encoded by the PIAS2 gene.

<span class="mw-page-title-main">SNW1</span> Protein-coding gene in the species Homo sapiens

SNW domain-containing protein 1 is a protein that in humans is encoded by the SNW1 gene.

<span class="mw-page-title-main">TFE3</span> Protein-coding gene in the species Homo sapiens

Transcription factor E3 is a protein that in humans is encoded by the TFE3 gene.

<span class="mw-page-title-main">Homeobox protein TGIF1</span> Protein found in humans

Homeobox protein TGIF1 is a protein that, in humans, is encoded by the TGIF1 gene. Alternative splicing has been observed at this locus and eight variants, encoding four distinct isoforms, are described.

<span class="mw-page-title-main">MECOM</span> Protein-coding gene in the species Homo sapiens

MDS1 and EVI1 complex locus protein EVI1 (MECOM) also known as ecotropic virus integration site 1 protein homolog (EVI-1) or positive regulatory domain zinc finger protein 3 (PRDM3) is a protein that in humans is encoded by the MECOM gene. EVI1 was first identified as a common retroviral integration site in AKXD murine myeloid tumors. It has since been identified in a plethora of other organisms, and seems to play a relatively conserved developmental role in embryogenesis. EVI1 is a nuclear transcription factor involved in many signaling pathways for both coexpression and coactivation of cell cycle genes.

<span class="mw-page-title-main">SKIL</span> Protein-coding gene in the species Homo sapiens

Ski-like protein is a protein that in humans is encoded by the SKIL gene.

<span class="mw-page-title-main">STRAP</span> Protein-coding gene in the species Homo sapiens

Serine-threonine kinase receptor-associated protein is an enzyme that in humans is encoded by the STRAP gene.

<span class="mw-page-title-main">KLF10</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 10 is a protein that in humans is encoded by the KLF10 gene.

<span class="mw-page-title-main">NFIX</span> Protein-coding gene in the species Homo sapiens

Nuclear factor 1 X-type is a protein that in humans is encoded by the NFIX gene. NFI-X3, a splice variant of NFIX, regulates Glial fibrillary acidic protein and YKL-40 in astrocytes.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000157933 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029050 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Vignais ML (February 2000). "[Ski and SnoN: antagonistic proteins of TGFbeta signaling]". Bull Cancer (in French). 87 (2): 135–7. PMID   10705283.
  6. Cell 2002;111:1-20.
  7. 1 2 3 Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS (May 2004). "Crystal structure of the dachshund homology domain of human SKI". Structure. 12 (5): 785–92. doi: 10.1016/j.str.2004.02.035 . PMID   15130471.
  8. Whitman M (August 1998). "Smads and early developmental signaling by the TGFbeta superfamily". Genes Dev. 12 (16): 2445–62. doi: 10.1101/gad.12.16.2445 . PMID   9716398.
  9. 1 2 3 4 5 6 Reed JA, Lin Q, Chen D, Mian IS, Medrano EE (June 2005). "SKI pathways inducing progression of human melanoma". Cancer Metastasis Rev. 24 (2): 265–72. doi:10.1007/s10555-005-1576-x. PMID   15986136. S2CID   23664913.
  10. PDB: 1SBX ; Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS (May 2004). "Crystal structure of the dachshund homology domain of human SKI". Structure. 12 (5): 785–92. doi: 10.1016/j.str.2004.02.035 . PMID   15130471.
  11. 1 2 3 Chen W, Lam SS, Srinath H, Schiffer CA, Royer WE, Lin K (April 2007). "Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling". J. Biol. Chem. 282 (15): 11365–76. doi: 10.1074/jbc.M700186200 . PMID   17283070.
  12. Ramel MC, Emery CM, Emery CS, Foulger R, Goberdhan DC, van den Heuvel M, Wilson C (April 2007). "Drosophila SnoN modulates growth and patterning by antagonizing TGF-beta signalling". Mech. Dev. 124 (4): 304–17. doi: 10.1016/j.mod.2006.12.006 . PMID   17289352. S2CID   14867669.
  13. Arndt S, Poser I, Moser M, Bosserhoff AK (April 2007). "Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling". Mol. Cell. Neurosci. 34 (4): 603–11. doi:10.1016/j.mcn.2007.01.002. PMID   17292623. S2CID   22992983.
  14. "Conserved Protein Domain Ski_Sno". NCBI.
  15. 1 2 3 4 Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y, Ishii S (October 2003). "Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation". J. Biol. Chem. 278 (40): 38998–9005. doi: 10.1074/jbc.M307112200 . PMID   12874272.
  16. Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, Yasukawa T, Colmenares C, Ishii S (September 2001). "The Ski protein family is required for MeCP2-mediated transcriptional repression". J. Biol. Chem. 276 (36): 34115–21. doi: 10.1074/jbc.M105747200 . PMID   11441023.
  17. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q (September 1999). "The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling". Genes Dev. 13 (17): 2196–206. doi:10.1101/gad.13.17.2196. PMC   316985 . PMID   10485843.
  18. Ueki N, Hayman MJ (August 2003). "Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling". J. Biol. Chem. 278 (35): 32489–92. doi: 10.1074/jbc.C300276200 . PMID   12857746.
  19. Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J, Kruse U, Sippel AE, Colmenares C, Stavnezer E (October 1997). "DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI". Nucleic Acids Res. 25 (19): 3895–903. doi:10.1093/nar/25.19.3895. PMC   146989 . PMID   9380514.
  20. Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Shinagawa T, Ichikawa-Iwata E, Zhong S, Pandolfi PP, Ishii S (June 2001). "Role of PML and PML-RARalpha in Mad-mediated transcriptional repression". Mol. Cell. 7 (6): 1233–43. doi: 10.1016/s1097-2765(01)00257-x . PMID   11430826.
  21. Cohen SB, Zheng G, Heyman HC, Stavnezer E (February 1999). "Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents". Nucleic Acids Res. 27 (4): 1006–14. doi:10.1093/nar/27.4.1006. PMC   148280 . PMID   9927733.
  22. Prathapam T, Kühne C, Hayman M, Banks L (September 2001). "Ski interacts with the evolutionarily conserved SNW domain of Skip". Nucleic Acids Res. 29 (17): 3469–76. doi:10.1093/nar/29.17.3469. PMC   55893 . PMID   11522815.
  23. Dahl R, Wani B, Hayman MJ (March 1998). "The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42". Oncogene. 16 (12): 1579–86. doi: 10.1038/sj.onc.1201687 . PMID   9569025.
  24. Leong GM, Subramaniam N, Figueroa J, Flanagan JL, Hayman MJ, Eisman JA, Kouzmenko AP (May 2001). "Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription". J. Biol. Chem. 276 (21): 18243–8. doi: 10.1074/jbc.M010815200 . PMID   11278756.

Further reading