SKIDA1

Last updated
SKIDA1
Identifiers
Aliases SKIDA1 , C10orf140, DLN-1, SKI/DACH domain containing 1
External IDs MGI: 1919918 HomoloGene: 66327 GeneCards: SKIDA1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_207371

NM_028317

RefSeq (protein)

NP_997254

NP_082593

Location (UCSC) Chr 10: 21.51 – 21.53 Mb Chr 2: 18.05 – 18.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ski/Dach domain-containing protein 1 is a protein that in humans is encoded by the SKIDA1 gene. [5] It is also known as C10orf140 and DLN-1. It has orthologs in vertebrates. It has two domains: the Ski/Sno/Dac domain and a domain of unknown function, DUF4854. It is associated with multiple types of cancer, like leukemia, ovarian cancer, and colon cancer. [6] [7] It's predicted to be a nuclear protein. [8] It may interact with PRC2. [9] [10]

Contents

Homologs

Orthologs

SKIDA1 has orthologs in vertebrate species. The species least related to humans with a SKIDA1 ortholog is the lancelet Branchiostoma belcheri. The clades amphibia and chondrichthyes have at least two species with SKIDA1, but SKIDA1 is not found throughout the clades. No orthologs have been found in lungfish or invertebrate species. [11]

Paralogous Domains

SKIDA1 shares the Ski/Sno/Dac domain with Ski oncogene (Ski), Ski-like protein (Sno), and dachshund (Dac). [12] It shares DUF4584 with Elongin BC Polycomb Repressive Complex 2 associated Protein (EPOP). [5]

Structure

Diagram of the SKIDA1 protein. Skida1 gene diagram.png
Diagram of the SKIDA1 protein.

In humans, SKIDA1 is located on the reverse strand of chromosome 10 at locus 10p12.31. It contains five exons. [5]

Isoforms

There is not a consensus on whether humans have one or two SKIDA1 isoforms. NCBI Gene claims there is one, while UniProt claims there are two. [13] [14] It's possible isoform 2 is recorded in NCBI Gene as DLN-1 (accession BAE93016.1). Isoform 1 is 908 amino acids long, while isoform 2 is 827 amino acids long; isoform 2 is missing amino acids 240-318 from isoform 1. [14] Isoform 1 is predicted to weigh 98 kDa and have an isoelectric point of 8.7, while isoform 2 is predicted to weigh 90 kDa and have an isoelectric point of 7.6. [15]

Other mammalian species also have multiple isoforms of SKIDA1, including carnivorans, rodents, and primates. The number of isoforms each species has varies: cheetahs have five recorded isoforms, chimpanzees have three recorded, and brown rats have two recorded. [16]

A predicted 3D structure of SKIDA1. The Ski/Sno/Dac domain, DUF4584, and C-Terminal region (amino acids 844-908) are annotated. Skida1 3D structure.png
A predicted 3D structure of SKIDA1. The Ski/Sno/Dac domain, DUF4584, and C-Terminal region (amino acids 844-908) are annotated.

Amino Acid Repeats

Human SKIDA1 contains two poly-alanine regions, one poly-histidine region, and one poly-glutamic acid region. [5] It's unknown if they have any function. The poly-alanine and poly-histidine regions are not highly conserved among orthologs; for example, while they are found in the house mouse ortholog, they are not found in the western lowland gorilla ortholog. [17] [18] The poly-glutamic acid region shows more conservation, and is found abbreviated in species as distantly related from humans as the tire track eel. [19]

Domains

SKIDA1 contains two domains: Ski/Sno/Dac and DUF4854. The Ski/Sno/Dac domain is at the N-terminus end of the protein. The Ski/Sno/Dac domain is also found in the proteins Ski, Ski-like protein, and dachshund. [12] It is potentially a DNA-binding domain. [20]

The other domain, DUF4854, is also found in EPOP, near its C-terminus. However, the DUF4584 found in EPOP is roughly a fifth the size of that in SKIDA1. The C-termini of SKIDA1 (amino acids 844-908) and EPOP (amino acids 313-379) have 52% identity. The C-terminus of EPOP binds to the SUZ12 subunit of Polycomb Repressive Complex 2 (PRC2), suggesting that of SKIDA1 may as well. [9]

Regulation

Promoter and Transcription Factors

In humans, there are five predicted potential promoters. Two align with the second half of the mRNA transcript, suggesting they are not used or only produce an incomplete polypeptide. [21]

The promoter that aligns best with the start of the mRNA transcript is potentially bound to by many transcription factors, including Transcription factor II B, Nuclear factor Y, Early growth response 1, and Krueppel-like factor 6. [21] It does not contain a TATA box.

Transcript Regulation

SKIDA1 is regulated by microRNAs. miR-93 binds to the SKIDA1 3'-UTR. [22] Multiple microRNAs are predicted to bind to the SKIDA1 3'-UTR, including miR-130, miR-301, miR-454, and miR-494. [23]

Polypeptide Modification

SKIDA1 is SUMOylated at five sites. [24] Additional sites are predicted to be SUMOylated. [25] [26] SKIDA1 is also predicted to be phosphorylated and O-GlcNAcylated. [27] [28]

Expression

Subcellular Localization

SKIDA1 is predicted to be localized primarily in the nucleus and less so in the cytosol. [8]

SKIDA1 is highly expressed in Purkinje cells in the cerebellum. SKIDA1 Purkinje.jpg
SKIDA1 is highly expressed in Purkinje cells in the cerebellum.

Tissue Expression

SKIDA1 is expressed at high levels in the brain, thyroid, and testes. It's expressed at medium to low levels in adipose tissue, lymph nodes, and skeletal muscle. [29] [30] [31] [32] In mice, it's noted to have medium-to-high expression in the olfactory bulb, retina, and salivary gland. [29]

Developmental Expression

Expression of SKIDA1 in the house mouse fetal heart increases, then decreases with age. Skida1 heart expression.png
Expression of SKIDA1 in the house mouse fetal heart increases, then decreases with age.

SKIDA1 expression changes during organism development. Expression is low in the zygote, peaks during embryonic development, and is low post-birth. In the house mouse, it's expressed most during organogenesis. [33] In the fetus, its expression is low in the liver but not other organs. [34] Expression in the adult liver is much higher. In contrast, SKIDA1 expression in the fetal brain is higher than in the adult brain. [32]

SKIDA1 in the African clawed frog is expressed faintly in the marginal zone of gastrulae. During neurulation, it's expressed in the brain and cranial neural crest. During tailbud, SKIDA1 expression increases in sensory placodes. By the end of tailbud, neural expression has faded except in the olfactory organ. [35]

Function

SKIDA1 is predicted to function primarily in the nucleus and also in the cytosol. [8]

SKIDA1 knockouts in mice have significant differences from wild-type mice in the skeletal, neurological, reproductive, and immune systems. Other significant differences include effected hearing, an enlarged thymus, and increased pre-weaning mortality. [36] Some, but not all, of these effects were found in heterozygous knockouts.

Clinical significance

SKIDA1 expression is associated with multiple types of cancer. It is over-expressed in epithelial ovarian cancer cells. [37] Its expression is altered by various cancer-treatment compounds: human alpha-lactalbumin made lethal to tumor cells; oleate salts; metformin; and aspirin.[ citation needed ] In cell lines of cancerous cells, altered expression is associated with resistance to dasatinib and docetaxel, which are used to treat cancer. [38] [39]

Altered methylation of SKIDA1 is associated with human pancreatic cancer, rheumatoid arthritis, and lupus erythematosus. [40] [41] Additionally, SKIDA1 is expressed less in women with Down syndrome compared to their identical twins without Down syndrome. [42] Its expression is dramatically reduced in brains affected by untreated HIV1-associated neurocognitive disorders (HAND) in comparison to healthy brains and brains affected by HAND but treated with antiretrovirals. [43]

Related Research Articles

<span class="mw-page-title-main">SKI protein</span> Protein-coding gene in the species Homo sapiens

The SKI protein is a nuclear proto-oncogene that is associated with tumors at high cellular concentrations. SKI has been shown to interfere with normal cellular functioning by both directly impeding expression of certain genes inside the nucleus of the cell as well as disrupting signaling proteins that activate genes.

<span class="mw-page-title-main">SKIL</span> Protein-coding gene in the species Homo sapiens

Ski-like protein is a protein that in humans is encoded by the SKIL gene.

<span class="mw-page-title-main">Morn repeat containing 1</span> Protein-coding gene in the species Homo sapiens

MORN1 containing repeat 1, also known as Morn1, is a protein that in humans is encoded by the MORN1 gene.

<span class="mw-page-title-main">DEPDC1B</span> Protein-coding gene in the species Homo sapiens

DEP Domain Containing Protein 1B also known as XTP1, XTP8, HBV XAg-Transactivated Protein 8, [formerly referred to as BRCC3] is a human protein encoded by a gene of similar name located on chromosome 5.

<span class="mw-page-title-main">FAM63A</span> Protein-coding gene in the species Homo sapiens

Family with sequence similarity 63, member A is a protein that, is encoded by the FAM63A gene in humans,. It is located on the minus strand of chromosome 1 at locus 1q21.3.

<span class="mw-page-title-main">FAM76A</span> Protein-coding gene in the species Homo sapiens

FAM76A is a protein that in Homo sapiens is encoded by the FAM76A gene. Notable structural characteristics of FAM76A include an 83 amino acid coiled coil domain as well as a four amino acid poly-serine compositional bias. FAM76A is conserved in most chordates but it is not found in other deuterostrome phlya such as echinodermata, hemichordata, or xenacoelomorpha—suggesting that FAM76A arose sometime after chordates in the evolutionary lineage. Furthermore, FAM76A is not found in fungi, plants, archaea, or bacteria. FAM76A is predicted to localize to the nucleus and may play a role in regulating transcription.

BEND2 is a protein that in humans is encoded by the BEND2 gene. It is also found in other vertebrates, including mammals, birds, and reptiles. The expression of BEND2 in Homo sapiens is regulated and occurs at high levels in the skeletal muscle tissue of the male testis and in the bone marrow. The presence of the BEN domains in the BEND2 protein indicates that this protein may be involved in chromatin modification and regulation.

<span class="mw-page-title-main">C16orf82</span> Protein-coding gene in the species Homo sapiens

C16orf82 is a protein that, in humans, is encoded by the C16orf82 gene. C16orf82 encodes a 2285 nucleotide mRNA transcript which is translated into a 154 amino acid protein using a non-AUG (CUG) start codon. The gene has been shown to be largely expressed in the testis, tibial nerve, and the pituitary gland, although expression has been seen throughout a majority of tissue types. The function of C16orf82 is not fully understood by the scientific community.

<span class="mw-page-title-main">Coiled-coil domain containing 74a</span> Protein found in humans

Coiled-coil domain containing 74A is a protein that in humans is encoded by the CCDC74A gene. The protein is most highly expressed in the testis and may play a role in developmental pathways. The gene has undergone duplication in the primate lineage within the last 9 million years, and its only true ortholog is found in Pan troglodytes.

<span class="mw-page-title-main">TMEM171</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 171 (TMEM171) is a protein that in humans is encoded by the TMEM171 gene.

<span class="mw-page-title-main">C2orf16</span> Protein-coding gene in the species Homo sapiens

C2orf16 is a protein that in humans is encoded by the C2orf16 gene. Isoform 2 of this protein is 1,984 amino acids long. The gene contains 1 exon and is located at 2p23.3. Aliases for C2orf16 include Open Reading Frame 16 on Chromosome 2 and P-S-E-R-S-H-H-S Repeats Containing Sequence.

Chromosome 1 open reading frame 141, or C1orf141 is a protein which, in humans, is encoded by gene C1orf141. It is a precursor protein that becomes active after cleavage. The function is not yet well understood, but it is suggested to be active during development

<span class="mw-page-title-main">WD Repeat and Coiled Coil Containing Protein</span> Protein-coding gene in humans

WD Repeat and Coiled-coiled containing protein (WDCP) is a protein which in humans is encoded by the WDCP gene. The function of the protein is not completely understood, but WDCP has been identified in a fusion protein with anaplastic lymphoma kinase found in colorectal cancer. WDCP has also been identified in the MRN complex, which processes double-stranded breaks in DNA.

<span class="mw-page-title-main">C22orf31</span> Protein-coding gene in the species Homo sapiens

C22orf31 is a protein which in humans is encoded by the C22orf31 gene. The C22orf31 mRNA transcript has an upstream in-frame stop codon, while the protein has a domain of unknown function (DUF4662) spanning the majority of the protein-coding region. The protein has orthologs with high percent similarity in mammals. The most distant orthologs are found in species of bony fish, but C22orf31 is not found in any species of birds or amphibians.

Transmembrane protein 39B (TMEM39B) is a protein that in humans is encoded by the gene TMEM39B. TMEM39B is a multi-pass membrane protein with eight transmembrane domains. The protein localizes to the plasma membrane and vesicles. The precise function of TMEM39B is not yet well-understood by the scientific community, but differential expression is associated with survival of B cell lymphoma, and knockdown of TMEM39B is associated with decreased autophagy in cells infected with the Sindbis virus. Furthermore, the TMEM39B protein been found to interact with the SARS-CoV-2 ORF9C protein. TMEM39B is expressed at moderate levels in most tissues, with higher expression in the testis, placenta, white blood cells, adrenal gland, thymus, and fetal brain.

<span class="mw-page-title-main">C6orf136</span> Protein-coding gene in the species Homo sapiens

C6orf136 is a protein in humans encoded by the C6orf136 gene. The gene is conserved in mammals, mollusks, as well some porifera. While the function of the gene is currently unknown, C6orf136 has been shown to be hypermethylated in response to FOXM1 expression in Head Neck Squamous Cell Carcinoma (HNSCC) tissue cells. Additionally, elevated expression of C6orf136 has been associated with improved survival rates in patients with bladder cancer. C6orf136 has three known isoforms.

<span class="mw-page-title-main">THAP3</span> Protein in Humans

THAP domain-containing protein 3 (THAP3) is a protein that, in Homo sapiens (humans), is encoded by the THAP3 gene. The THAP3 protein is as known as MGC33488, LOC90326, and THAP domain-containing, apoptosis associated protein 3. This protein contains the Thanatos-associated protein (THAP) domain and a host-cell factor 1C binding motif. These domains allow THAP3 to influence a variety of processes, including transcription and neuronal development. THAP3 is ubiquitously expressed in H. sapiens, though expression is highest in the kidneys.

<span class="mw-page-title-main">C13orf46</span> C13of46 Gene and Protein

Chromosome 13 Open Reading Frame 46 is a protein which in humans is encoded by the C13orf46 gene. In humans, C13orf46 is ubiquitously expressed at low levels in tissues, including the lungs, stomach, prostate, spleen, and thymus. This gene encodes eight alternatively spliced mRNA transcript, which produce five different protein isoforms.

<span class="mw-page-title-main">TMEM248</span> Transmembrane protein 248/TMEM248 gene

Transmembrane protein 248, also known as C7orf42, is a gene that in humans encodes the TMEM248 protein. This gene contains multiple transmembrane domains and is composed of seven exons.TMEM248 is predicted to be a component of the plasma membrane and be involved in vesicular trafficking. It has low tissue specificity, meaning it is ubiquitously expressed in tissues throughout the human body. Orthology analyses determined that TMEM248 is highly conserved, having homology with vertebrates and invertebrates. TMEM248 may play a role in cancer development. It was shown to be more highly expressed in cases of colon, breast, lung, ovarian, brain, and renal cancers.

<span class="mw-page-title-main">MROH9</span> Mammalian gene

Maestro heat-like repeat-containing protein family member 9 (MROH9) is a protein which in humans is encoded by the MROH9 gene. The word ‘maestro’ itself is an acronym, standing for male-specific transcription in the developing reproductive organs (MRO). MRO genes belong to the MROH family, which includes MROH9.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000180592 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000054074 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 "SKI/DACH domain-containing protein 1 [Homo sapiens]". NCBI. Retrieved 11 February 2019.
  6. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. (April 2013). "GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer". Nature Genetics. 45 (4): 362–70, 370e1-2. doi:10.1038/ng.2564. PMC   3693183 . PMID   23535730.
  7. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ (June 2017). "A molecular portrait of microsatellite instability across multiple cancers". Nature Communications. 8: 15180. Bibcode:2017NatCo...815180C. doi:10.1038/ncomms15180. PMC   5467167 . PMID   28585546.
  8. 1 2 3 "PSORT II". PSORT II. 24 November 1999. Retrieved 12 April 2019.
  9. 1 2 Liefke R, Shi Y (2015-04-28). "The PRC2-associated factor C17orf96 is a novel CpG island regulator in mouse ES cells". Cell Discovery. 1: 15008. doi:10.1038/celldisc.2015.8. PMC   4860827 . PMID   27462409.
  10. Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, et al. (October 2016). "A High-Density Map for Navigating the Human Polycomb Complexome". Cell Reports. 17 (2): 583–595. doi: 10.1016/j.celrep.2016.08.096 . hdl: 20.500.11850/122094 . PMID   27705803.
  11. "NCBI Protein". NCBI. Retrieved 10 February 2019.
  12. 1 2 "NCBI CDD CDD Conserved Protein Domain Ski_Sno". www.ncbi.nlm.nih.gov. Retrieved 2019-02-11.
  13. "SKIDA1 SKI/DACH domain containing 1 [Homo sapiens (human)]". NCBI. 13 February 2019. Retrieved 1 May 2019.
  14. 1 2 "SKIDA1 - SKI/DACH domain-containing protein 1". UniProt. 10 April 2019. Retrieved 1 May 2019.
  15. "Compute pI/Mw". ExPASy. Retrieved 2 April 2019.
  16. Protein [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004 – [cited 2019 March 2]. Available from: https://www.ncbi.nlm.nih.gov/protein/
  17. "SKI/DACH domain-containing protein 1 [Mus musculus]". NCBI. 15 August 2018. Retrieved 26 February 2019.
  18. "PREDICTED: SKI/DACH domain-containing protein 1[Gorilla gorilla gorilla]". NCBI. 4 November 2016. Retrieved 26 February 2019.
  19. "SKI/Dach domain-containing protein 1 [Mastacembelus armatus]". NCBI. 6 September 2018. Retrieved 26 February 2019.
  20. Kim SS, Zhang RG, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS (June 2002). "Structure of the retinal determination protein Dachshund reveals a DNA binding motif". Structure. 10 (6): 787–95. doi: 10.1016/S0969-2126(02)00769-4 . PMID   12057194.
  21. 1 2 "Genome Annotation and Browser". Genomatix. December 2017. Retrieved 31 March 2019.
  22. Saito K (2011). "The mechanism of inflammation in autoimmune response during the acute phase of Kawasaki disease". KAKEN. Retrieved 5 May 2019.
  23. "TargetScanHuman 7.2 predicted targeting of Human SKIDA1". TargetScan. March 2018. Retrieved 31 March 2019.
  24. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML (March 2017). "Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation". Nature Structural & Molecular Biology. 24 (3): 325–336. doi:10.1038/nsmb.3366. PMID   28112733. S2CID   2651164.
  25. "SUMOplot". Abgent. 2013. Archived from the original on 3 January 2005. Retrieved 19 April 2019.
  26. "GPS-SUMO: Prediction of SUMOylation Sites & SUMO-interaction Motifs". The CUCKOO Workshop. 2014. Archived from the original on 17 February 2019. Retrieved 19 April 2019.
  27. "GPS 3.0 - Kinase-specific Phosphorylation Site Prediction". The CUCKOO Workshop. Retrieved 19 April 2016.
  28. "YinOYang 1.2 Server". DTU Bioinformatics. 2 January 2017. Retrieved 19 April 2019.
  29. 1 2 Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. (April 2004). "A gene atlas of the mouse and human protein-encoding transcriptomes". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6062–7. Bibcode:2004PNAS..101.6062S. doi: 10.1073/pnas.0400782101 . PMC   395923 . PMID   15075390.
  30. She X, Rohl CA, Castle JC, Kulkarni AV, Johnson JM, Chen R (June 2009). "Definition, conservation and epigenetics of housekeeping and tissue-enriched genes". BMC Genomics. 10 (1): 269. doi: 10.1186/1471-2164-10-269 . PMC   2706266 . PMID   19534766.
  31. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. (February 2014). "Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics". Molecular & Cellular Proteomics. 13 (2): 397–406. doi: 10.1074/mcp.M113.035600 . PMC   3916642 . PMID   24309898.
  32. 1 2 Duff MO, Olson S, Wei X, Garrett SC, Osman A, Bolisetty M, et al. (May 2015). "Genome-wide identification of zero nucleotide recursive splicing in Drosophila". Nature. 521 (7552): 376–9. Bibcode:2015Natur.521..376D. doi:10.1038/nature14475. PMC   4529404 . PMID   25970244.
  33. "EST Profile - Mm.102183". NCBI Unigene. Retrieved 3 May 2019.
  34. "GenePaint". GenePaint. Retrieved 29 March 2019.
  35. Seufert DW, Hegde RS, Nekkalapudi S, Kelly LE, El-Hodiri HM (December 2005). "Expression of a novel Ski-like gene in Xenopus development". Gene Expression Patterns. 6 (1): 22–8. doi:10.1016/j.modgep.2005.05.004. PMID   16169285.
  36. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. (September 2016). "High-throughput discovery of novel developmental phenotypes". Nature. 537 (7621): 508–514. Bibcode:2016Natur.537..508.. doi:10.1038/nature19356. PMC   5295821 . PMID   27626380.
  37. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, et al. (April 2013). "GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer". Nature Genetics. 45 (4): 362–70, 370e1-2. doi:10.1038/ng.2564. PMC   3693183 . PMID   23535730.
  38. Chien W, Sun QY, Lee KL, Ding LW, Wuensche P, Torres-Fernandez LA, Tan SZ, Tokatly I, Zaiden N, Poellinger L, Mori S, Yang H, Tyner JW, Koeffler HP (April 2015). "Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer". Molecular Oncology. 9 (4): 889–905. doi:10.1016/j.molonc.2015.01.002. PMC   4387089 . PMID   25637283.
  39. Marín-Aguilera M, Codony-Servat J, Kalko SG, Fernández PL, Bermudo R, Buxo E, Ribal MJ, Gascón P, Mellado B (February 2012). "Identification of docetaxel resistance genes in castration-resistant prostate cancer". Molecular Cancer Therapeutics. 11 (2): 329–39. doi: 10.1158/1535-7163.MCT-11-0289 . PMID   22027694.
  40. US 9994911,Ahlquist DA, Kisiel JB, Taylor WR, Yab TC, Mahoney DW, Lidgard GP, Allawi HT,"Detecting Neoplasm",issued 12 June 2018, assigned to Mayo Foundation for Medical Educationand Research Exact Sciences Development Company LLC
  41. Julià A, Absher D, López-Lasanta M, Palau N, Pluma A, Waite Jones L, Glossop JR, Farrell WE, Myers RM, Marsal S (July 2017). "Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells". Human Molecular Genetics. 26 (14): 2803–2811. doi: 10.1093/hmg/ddx177 . PMID   28475762.
  42. Hibaoui Y, Grad I, Letourneau A, Santoni FA, Antonarakis SE, Feki A (December 2014). "Data in brief: Transcriptome analysis of induced pluripotent stem cells from monozygotic twins discordant for trisomy 21". Genomics Data. 2: 226–9. doi:10.1016/j.gdata.2014.07.006. PMC   4535757 . PMID   26484098.
  43. Borjabad A, Morgello S, Chao W, Kim SY, Brooks AI, Murray J, Potash MJ, Volsky DJ (September 2011). Desrosiers RC (ed.). "Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders". PLOS Pathogens. 7 (9): e1002213. doi: 10.1371/journal.ppat.1002213 . PMC   3164642 . PMID   21909266.