Salinibacter ruber

Last updated

Salinibacter ruber
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
S. ruber
Binomial name
Salinibacter ruber
Antón et al., 2002

Salinibacter ruber is an extremely halophilic red bacterium, first found in Spain in 2002.

Contents

Habitat

Salinibacter ruber was found in saltern crystallizer ponds in Alicante and Mallorca, Spain in 2002 by Antón et al. This environment has very high salt concentrations, and Salinibacter ruber itself cannot grow at below 15% salt concentration, with an ideal concentration between 20 and 30%. [1] It has also been found in pink lakes in Australia. [2] [3]

This bacterium is notable for its halophilic lifestyle, a trait exhibited primarily by members of Archaea. In general, bacteria do not play a large role in microbial communities of hypersaline brines at or approaching NaCl saturation. However, with the discovery of S. ruber, this belief was challenged. It was found that S. ruber made up from 5% to 25% of the total prokaryotic community of the Spanish saltern ponds. [1]

Taxonomy

Salinibacter ruber is most closely related to the genus Rhodothermus which is a thermophilic, slightly halophilic bacterium. Though genetically it is considered to be closest to the Rhodothermus genus, it is most comparable to the family Halobacteriaceae, because of similarity in protein structure. [1] It is red-pigmented, motile, rod-shaped, and extremely halophilic. The type strain is strain M31T(= DSM 13855T = CECT 5946T).

Characteristics

In a 2015 study conducted by researchers led by molecular biologist Ken McGrath at Lake Hillier, Western Australia, showed that, while the algae Dunaliella salina , formerly thought to create the color in this pink lake, was present in only tiny quantities (0.1% of DNA sampled), while S. ruber formed 20 [2] to 33% [4] [5] [3] [lower-alpha 1] of the DNA recovered from the lake. [2]

Salinibacter ruber produces a pigment called bacterioruberin, which helps it to trap and use light for energy in the photosynthesis process. While the pigments in algae are contained within the chloroplasts, bacterioruberin is spread across the whole cell of the bacterium. This makes it more likely that the colour of the lake is that of S. ruber. [3]

Footnotes

  1. Conflicting reports of percentage.

Related Research Articles

A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<i>Halobacterium</i> Genus of archaea

Halobacterium is a genus in the family Halobacteriaceae.

Halobacteriaceae is a family in the order Halobacteriales and the domain Archaea. Halobacteriaceae represent a large part of halophilic Archaea, along with members in two other methanogenic families, Methanosarcinaceae and Methanocalculaceae. The family consists of many diverse genera that can survive extreme environmental niches. Most commonly, Halobacteriaceae are found in hypersaline lakes and can even tolerate sites polluted by heavy metals. They include neutrophiles, acidophiles, alkaliphiles, and there have even been psychrotolerant species discovered. Some members have been known to live aerobically, as well as anaerobically, and they come in many different morphologies. These diverse morphologies include rods in genus Halobacterium, cocci in Halococcus, flattened discs or cups in Haloferax, and other shapes ranging from flattened triangles in Haloarcula to squares in Haloquadratum, and Natronorubrum. Most species of Halobacteriaceae are best known for their high salt tolerance and red-pink pigmented members, but there are also non-pigmented species and those that require moderate salt conditions. Some species of Halobacteriaceae have been shown to exhibit phosphorus solubilizing activities that contribute to phosphorus cycling in hypersaline environments. Techniques such as 16S rRNA analysis and DNA-DNA hybridization have been major contributors to taxonomic classification in Halobacteriaceae, partly due to the difficulty in culturing halophilic Archaea.

<span class="mw-page-title-main">Halobacteriales</span> Order of archaea

Halobacteriales are an order of the Halobacteria, found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide.

<i>Halobacterium salinarum</i> Species of archaeon

Halobacterium salinarum, formerly known as Halobacterium cutirubrum or Halobacterium halobium, is an extremely halophilic marine obligate aerobic archaeon. Despite its name, this is not a bacterium, but a member of the domain Archaea. It is found in salted fish, hides, hypersaline lakes, and salterns. As these salterns reach the minimum salinity limits for extreme halophiles, their waters become purple or reddish color due to the high densities of halophilic Archaea. H. salinarum has also been found in high-salt food such as salt pork, marine fish, and sausages. The ability of H. salinarum to survive at such high salt concentrations has led to its classification as an extremophile.

<i>Haloarcula</i> Genus of archaea

Haloarcula is a genus of extreme halophilic Archaea in the class of Halobactaria.

In taxonomy, Haloplanus is a genus of the Halobacteriaceae.

<i>Haloquadratum</i> Genus of archaea

Haloquadratum is a genus of archaean, belonging to the family Haloferacaceae. The first species to be identified in this group, Haloquadratum walsbyi, is unusual in that its cells are shaped like square, flat boxes.

In taxonomy, Natrialba is a genus of the Natrialbaceae. The genus consists of many diverse species that can survive extreme environmental niches, especially they are capable to live in the waters saturated or nearly saturated with salt (halophiles). They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell.

<span class="mw-page-title-main">Pink lake</span> Pink lake phenomenon and examples

A pink lake is a lake that has a red or pink colour. This is often caused by the presence of salt-tolerant algae that produces carotenoids, such as Dunaliella salina, usually in conjunction with specific bacteria and archaea, which may vary from lake to lake. The most common archaeon is Halobacterium salinarum.

Rhodothermus marinus is a species of bacteria. It is obligately aerobic, moderately halophilic, thermophilic, Gram-negative and rod-shaped, about 0.5 μm in diameter and 2-2.5 μm long.

Halanaerobacter chitinovorans is a species of bacteria, the type species of its genus. It is a halophilic, anaerobic, chitinolytic bacterium. Its cells are long, gram-negative, motile, flexible rods.

<i>Haloquadratum walsbyi</i> Species of halotolerant archaea

Haloquadratum walsbyi is of the genus Haloquadratum, within the archaea domain known for its square halophilic nature. First discovered in a brine pool in the Sinai peninsula of Egypt, H. walsbyi is noted for its flat, square-shaped cells, and its unusual ability to survive in aqueous environments with high concentrations of sodium chloride and magnesium chloride. The species' genus name Haloquadratum translates from Greek and Latin as "salt square". This archaean is also commonly referred to as "Walsby's Square Bacterium" because of its identifying square shape which makes it unique. In accordance with its name, Haloquadratum walsbyi are most abundantly observed in salty environments.

Halococcus salifodinae is an extremely halophilic archaeon, first isolated in an Austrian salt mine. It is a coccoid cell with pink pigmentation, its type strain being Blp.

Halococcus dombrowskii is an archaeon first isolated from a Permian alpine salt deposit. It is an extremely halophilic coccoid with type strain H4T.

Halobacterium noricense is a halophilic, rod-shaped microorganism that thrives in environments with salt levels near saturation. Despite the implication of the name, Halobacterium is actually a genus of archaea, not bacteria. H. noricense can be isolated from environments with high salinity such as the Dead Sea and the Great Salt Lake in Utah. Members of the Halobacterium genus are excellent model organisms for DNA replication and transcription due to the stability of their proteins and polymerases when exposed to high temperatures. To be classified in the genus Halobacterium, a microorganism must exhibit a membrane composition consisting of ether-linked phosphoglycerides and glycolipids.

Methylohalobius crimeensis is a moderately halophilic, methanotrophic bacterium, the type species of its genus. It is Gram-negative, aerobic, non-pigmented, motile, coccoid to spindle-shaped, with type strain 10KiT.

Halorhodospira halophila is a species of Halorhodospira distinguished by its ability to grow optimally in an environment of 15–20% salinity. It was formerly called Ectothiorhodospira halophila. It is an anaerobic, rod-shaped Gram-negative bacterium. H. halophila has a flagellum.

<i>Haloferax mediterranei</i> Species of bacterium

Haloferax mediterranei is a species of archaea in the family Haloferacaceae.

References

  1. 1 2 3 Antón J; Oren A; Benlloch S; Rodríguez-Valera F; Amann R; Rosselló-Mora R (March 2002). "Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds". International Journal of Systematic and Evolutionary Microbiology . 52 (Pt 2): 485–91. doi: 10.1099/00207713-52-2-485 . hdl: 21.11116/0000-0001-D329-3 . PMID   11931160 . Retrieved 2013-07-24.
  2. 1 2 3 Salleh, Anna (4 January 2022). "Why Australia has so many pink lakes and why some of them are losing their colour". ABC News. ABC Science. Australian Broadcasting Corporation . Retrieved 21 January 2022.
  3. 1 2 3 Cassella, Carly (13 December 2016). "How an Australian lake turned bubble-gum pink". Australian Geographic. Retrieved 22 January 2022.
  4. "Here's the Real Reason Why Australia Has Bubblegum Pink Lakes". Discovery. 24 December 2019. Retrieved 22 January 2022.
  5. "Why is Pink Lake on Middle Island, off the coast of Esperance, pink?". Australia's Golden Outback. Includes extract from Australian Geographic article. 18 January 2021. Retrieved 22 January 2022.{{cite web}}: CS1 maint: others (link)

Further reading