Salinibacter ruber | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Rhodothermota |
Class: | Rhodothermia |
Order: | Rhodothermales |
Family: | Salinibacteraceae |
Genus: | Salinibacter |
Species: | S. ruber |
Binomial name | |
Salinibacter ruber Antón et al., 2002 | |
Salinibacter ruber is an extremely halophilic red bacterium, first found in Spain in 2002.
Salinibacter ruber is most closely related to the genus Rhodothermus which is a thermophilic, slightly halophilic bacterium. Though genetically it is considered to be closest to the Rhodothermus genus, it is most comparable to the family Halobacteriaceae, because of similarity in protein structure. [1] It is red-pigmented, motile, rod-shaped, and extremely halophilic. The type strain is strain M31T(= DSM 13855T = CECT 5946T).
Salinibacter ruber was found in saltern crystallizer ponds in Alicante and Mallorca, Spain in 2002 by Antón et al. This environment has very high salt concentrations, and Salinibacter ruber itself cannot grow at below 15% salt concentration, with an ideal concentration between 20 and 30% [1] It has also been found in pink lakes in Australia. [2] [3] (200-300 grams of salt per litre, the average concentration in the ocean being around 35 g/L).
This bacterium is notable for its halophilic lifestyle, a trait exhibited primarily by members of Archaea. In general, bacteria do not play a large role in microbial communities of hypersaline brines at or approaching NaCl saturation. However, with the discovery of S. ruber, this belief was challenged. It was found that S. ruber made up from 5% to 25% of the total prokaryotic community of the Spanish saltern ponds. [1]
In a 2015 study conducted by researchers led by molecular biologist Ken McGrath at Lake Hillier, Western Australia, showed that, while the algae Dunaliella salina , formerly thought to create the color in this pink lake, was present in only tiny quantities (0.1% of DNA sampled), while S. ruber formed 20 [2] to 33% [4] [5] [3] [a] of the DNA recovered from the lake. [2]
Salinibacter ruber produces a pigment called bacterioruberin, which helps it to trap and use light for energy in the photosynthesis process. While the pigments in algae are contained within the chloroplasts, bacterioruberin is spread across the whole cell of the bacterium. This makes it more likely that the colour of the lake is that of S. ruber. [3]
A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.
The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.
Halobacterium is a genus in the family Halobacteriaceae.
Halobacteriales are an order of the Halobacteria, found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide.
Dunaliella salina is a type of halophile unicellular green algae especially found in hypersaline environments, such as salt lakes and salt evaporation ponds. Known for its antioxidant activity because of its ability to create a large amount of carotenoids, it is responsible for most of the primary production in hypersaline environments worldwide, and is also used in cosmetics and dietary supplements.
Halobacterium salinarum, formerly known as Halobacterium cutirubrum or Halobacterium halobium, is an extremely halophilic marine obligate aerobic archaeon. Despite its name, this is not a bacterium, but a member of the domain Archaea. It is found in salted fish, hides, hypersaline lakes, and salterns. As these salterns reach the minimum salinity limits for extreme halophiles, their waters become purple or reddish color due to the high densities of halophilic Archaea. H. salinarum has also been found in high-salt food such as salt pork, marine fish, and sausages. The ability of H. salinarum to live at such high salt concentrations has led to its classification as an extremophile.
In taxonomy, Haloplanus is a genus of the Halobacteriaceae.
Haloquadratum is a genus of archaean, belonging to the family Haloferacaceae. The first species to be identified in this group, Haloquadratum walsbyi, is unusual in that its cells are shaped like square, flat boxes.
In taxonomy, Natrialba is a genus of the Natrialbaceae. The genus consists of many diverse species that can survive extreme environmental niches, especially they are capable to live in the waters saturated or nearly saturated with salt (halophiles). They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell.
A pink lake is a lake that has a red or pink colour. This is often caused by the presence of salt-tolerant algae that produces carotenoids, such as Dunaliella salina, usually in conjunction with specific bacteria and archaea, which may vary from lake to lake. The most common archaeon is Halobacterium salinarum.
Deleya halophila is a salt-loving, gram-negative bacteria. It is known to habitat marine environments, solar salterns, saline soils, and salted food. The genus was named after J. De Ley, a noted biologist. Its type strain is CCM 3662.
Halanaerobacter chitinovorans is a species of bacteria, the type species of its genus. It is a halophilic, anaerobic, chitinolytic bacterium. Its cells are long, gram-negative, motile, flexible rods.
Haloquadratum walsbyi is a species of Archaea in the genus Haloquadratum, known for its square shape and halophilic nature.
Halococcus salifodinae is an extremely halophilic archaeon, first isolated in an Austrian salt mine. It is a coccoid cell with pink pigmentation, its type strain being Blp.
Halococcus dombrowskii is an archaeon first isolated from a Permian alpine salt deposit. It is an extremely halophilic coccoid with type strain H4T.
Halobacterium noricense is a halophilic, rod-shaped microorganism that thrives in environments with salt levels near saturation. Despite the implication of the name, Halobacterium is actually a genus of archaea, not bacteria. H. noricense can be isolated from environments with high salinity such as the Dead Sea and the Great Salt Lake in Utah. Members of the Halobacterium genus are excellent model organisms for DNA replication and transcription due to the stability of their proteins and polymerases when exposed to high temperatures. To be classified in the genus Halobacterium, a microorganism must exhibit a membrane composition consisting of ether-linked phosphoglycerides and glycolipids.
Methylohalobius crimeensis is a moderately halophilic, methanotrophic bacterium, the type species of its genus. It is Gram-negative, aerobic, non-pigmented, motile, coccoid to spindle-shaped, with type strain 10KiT.
Halorhodospira halophila is a species of Halorhodospira distinguished by its ability to grow optimally in an environment of 15–20% salinity. It was formerly called Ectothiorhodospira halophila. It is an anaerobic, rod-shaped Gram-negative bacterium. H. halophila has a flagellum.
Haloferax mediterranei is a species of archaea in the family Haloferacaceae.
Halorubrum kocurii is a halophilic archaean belonging to the genus Halorubrum. This genus contains a total of thirty-seven different species, all of which thrive in high-salinity environments. Archaea belonging to this genus are typically found in hypersaline environments due to their halophilic nature, specifically in solar salterns. Halorubrum kocurii is a rod-shaped, Gram-negative archaeon. Different from its closest relatives, Halorubrum kocurii is non-motile and contains no flagella or cilia. This archaeon thrives at high pH levels, high salt concentrations, and moderate temperatures. It has a number of close relatives, including Halorubrum aidingense, Halorubrum lacusprofundi, and more.
{{cite web}}
: CS1 maint: others (link)