Proteus | |
---|---|
General information | |
Type | Experimental aircraft |
Manufacturer | Scaled Composites |
Designer | |
Status | In service |
Number built | 1 |
History | |
First flight | July 28, 1998 |
Developed into | Scaled Composites White Knight |
The Scaled Composites Model 281 Proteus is a tandem-wing high-altitude long-endurance aircraft designed by Burt Rutan to investigate the use of aircraft as high-altitude telecommunications relays. The Proteus is a multi-mission vehicle able to carry various payloads on a ventral pylon. The Proteus has an extremely efficient design and can orbit a point at over 19,800 m for more than 18 hours. It is currently owned by Northrop Grumman.
Proteus has an all-composite airframe with graphite-epoxy sandwich construction. Its wingspan of 77 feet 7 inches (23.65 m) is expandable to 92 feet (28 m) with removable wingtips installed. Proteus is an "optionally piloted" aircraft ordinarily flown by two pilots in a pressurized cabin. However, it also has the capability to perform its missions semi-autonomously or flown remotely from the ground. Under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, NASA's Dryden Flight Research Center assisted Scaled Composites in developing a sophisticated station-keeping autopilot system and a satellite communications (SATCOM)-based uplink-downlink data system for Proteus' performance and payload data. The Proteus wing was adapted for use on the Model 318 White Knight carrier aircraft, which is the launch system for Rutan's Tier One spacecraft and the DARPA X-37.
Flight testing of the Proteus began with its first flight on July 26, 1998, at the Mojave Airport and continued through the end of 1999. In June, Proteus was deployed internationally for the first time, debuting at the Paris Air Show. It was flown non-stop from Bangor, Maine to Paris. During the week-long show, it flew each day, demonstrating its capabilities as a telecommunications platform.
The Proteus is the current holder of a number of FAI world records for altitude (class: C1-e: landplanes 3,000–6,000 kg, Group: 3, turbojet), set in cooperation with NASA Dryden. [1] The highest altitude achieved was 63,245 feet (19,277 m) in October 2000.
Proteus was included in the list of the "100 Best of 1998 Design", by Time magazine, December 21, 1998. [2]
Due to the multimission nature of the aircraft, it has been involved in a number of significant research projects and missions. Scaled Composites, a wholly owned subsidiary of Northrop Grumman, actively markets the aircraft as a research platform, and has published a user's guide for planning proposed missions. [3]
Proteus was originally conceived as a high-altitude, long operation (HALO) telecommunications platform. Proteus was to be the first of a series of aircraft built by Scaled Technology Works of Montrose, Colorado (a proposed spinoff of Scaled Composites which was later cancelled). The aircraft was intended to carry a 14-foot (4.3 m) antenna, which was flight tested in the autumn of 1999 and the summer of 2000, including the relay of a video conference while the aircraft orbited over Los Angeles. [4] The project failed to move forward, however, and the subsequent series of aircraft were not built.
A small Airborne Real-Time Imaging System (ARTIS) camera, developed by HyperSpectral Sciences, Inc., under NASA's ERAST project, was demonstrated during the summer of 1999 when it took visual and near-infrared photos from Proteus while it was flying high over the Experimental Aircraft Association's AirVenture 99 Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken.
Proteus' first science mission was to carry the National Polar-Orbiting Operational Environmental Satellite System Airborne Sounder Testbed – Interferometer (NAST-I) instrument in March 2000 during the Cloud-Intensive Operating Period over the Department of Energy Cloud and Radiation Testbed (CART) site. The flights, based out of Stilwell, Oklahoma, encompassed 30 flight hours over a week and a half, characterizing cloud properties and validating the instrument. [5]
Then, in September and October 2000, during the Water-Vapor Intensive Operating Period, Proteus and NAST flew validation flights studying upper tropospheric water vapor and performing underflights of the Terra satellite.
In November–December 2000, Proteus flew as part of the DOE's Atmospheric Radiation Measurement (ARM) program and their water vapor experiments. Flights were essentially the same as was flown for the NAST Water-Vapor Intensive Operating Period validation flights. [6]
As part of the TRACE-P (Transport and Chemical Evolution over the Pacific) mission, Proteus once again carried the NAST pod during March 2001. The aircraft logged 126 flight hours, and was variously based out of Alaska, Hawaii and Japan, gathering data in coordination with ground, balloon and satellite sensor packages over the North Pole in March 2001. [7] [8]
Proteus took part in the NASA Chesapeake Lighthouse & Aircraft Measurements for Satellites (CLAMS) program in July and August 2001, flying out of NASA's Wallops Flight Facility. The project used a number of different aircraft to develop methods of measuring ocean characteristics, and estimates of aerosols. [9]
In February 2002, Proteus carried a 30-foot-long (9.1 m) pod which served as a target for development of the Boeing YAL-1 Airborne Laser system. The pod housed an array of over 2000 small holes containing optical sensors to detect the laser system. Due to scheduling constraints with other Proteus customers, the Airborne Laser never conducted an actual flight test with the Proteus target system. A target system was designed and integrated into the NKC-135 Big Crow aircraft and used for the majority of Airborne Laser testing.
In March 2002, NASA Dryden, in cooperation with New Mexico State University's Technical Analysis and Applications Center (TAAC), the FAA and several other entities, conducted flight demonstrations of an active detect, see and avoid (DSA) system for potential application to unmanned aerial vehicles (UAVs) out of Las Cruces, New Mexico. This was a part of the NASA ERAST Project. Proteus was flown as a surrogate UAV controlled remotely from the ground, although safety pilots were aboard to handle takeoff and landing and any potential emergencies. Three other aircraft, ranging from general aviation aircraft to a NASA F/A-18, served as "cooperative" target aircraft with an operating transponder. In each of 18 different scenarios, a Goodrich Skywatch HP Traffic Advisory System (TAS) on the Proteus detected approaching air traffic on potential collision courses, including several scenarios with two aircraft approaching from different directions. The remote pilot then directed Proteus to turn, climb or descend as needed to avoid the potential threat.
In April 2003, a second series of flight demonstrations focusing on "non-cooperative" aircraft (those without operating transponders), was conducted in restricted airspace near Mojave, California, again using the Proteus as a surrogate UAV. Proteus was equipped with a small Amphitech OASys 35 GHz primary radar system to detect potential intruder aircraft on simulated collision courses. The radar data was sent directly to the ground station as well as via an Inmarsat satellite system installed on Proteus. A mix of seven intruder aircraft, ranging from a sailplane to a high-speed jet, flew 20 scenarios over a four-day period, one or two aircraft at a time. In each case, the radar picked up the intruding aircraft at ranges from 2.5 to 6.5 miles (10.5 km), depending on the intruder's radar signature. Proteus' remote pilot on the ground was able to direct Proteus to take evasive action if needed.
The International H2O Project (IHOP 2002) was a field experiment which took place over the Southern Great Plains of the United States from May 13 to June 25, 2002. The chief aim of IHOP 2002 was improved characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection. The NASA Holographic Airborne Rotating Lidar Instrument Experiment was flown as a part of this project. Flights were performed in coordination with Lockheed P-3 and DC-8 aircraft. [10] [11]
In July 2002, Proteus participated in Crystal-FACE, measuring tropical cirrus clouds, operating from Key West, Florida, flying as far south as Belize. For this phase of the project, the aircraft was configured with 10-foot (3.0 m) canards and 13+1⁄2-foot wingtip extensions. [12] [13]
Proteus has been used in a number of deployments as a part of a project sponsored by the DOE's Atmospheric Radiation Measurement program and the Sandia National Laboratories to study cirrus clouds in the upper atmosphere. [14]
In May and June 2005, Transformational Space Corp., or t/Space, flight tested their rocket release concept utilizing Scaled Composites' Proteus. A captive-carry test flight was performed on May 13, and the rocket mockup was dropped three times, on May 24, June 7 and June 14, over Edwards AFB. The mockup was a 23% scale model of a proposed four-person crew capsule (called the CXV) and its AirLaunch LLC-produced QuickReach II booster. [15] These particular flight tests were to demonstrate the concept of t/Space's Trapeze/Lanyard (TLAD) air drop system. [16]
Northrop Grumman is using the Proteus to research new UAV technologies, as it can be controlled from the cockpit, a ground control station, or operate semi-autonomously. Scaled, in partnership with Northrop Grumman, is offering a fully uncrewed version of the Proteus, labeled Model 395, as part of the competition for the USAF Hunter-Killer competition. If selected, that product would have been flown in 2007.[ needs update ]
On February 24, 2005, Proteus became Scaled's first bomber with the release of an inert 500-pound weapon over Nellis Air Force Base in Nevada. [17]
On April 27, 2006, Proteus flight tested a large pod designed to house a developmental version of the Multi-Platform Radar Technology Insertion Program, or MP-RTIP. This is a long range, high resolution air-to-ground and air-to-air synthetic aperture radar system being developed for use on the RQ-4 Global Hawk. This pod is, by function of its length and frontal area, one of the largest payloads carried by Proteus to date. Actual flight testing of the MP-RTIP system began in late September 2006, with initial flight reaching 100 knots (120 mph; 190 km/h) and 22,000 feet (6,700 m) altitude. [18] [19]
Proteus has set several world altitude records in FAI Class C-1e (Landplanes: takeoff weight 3,000 to 6,000 kg (6,600 to 13,200 lb)), Group 2, turbojet, including:
Data from Jane's All the World's Aircraft 2003–2004 [21]
General characteristics
Performance
Related development
The Northrop Grumman RQ-4 Global Hawk is a high-altitude, remotely-piloted surveillance aircraft introduced in 2001. It was initially designed by Ryan Aeronautical, and known as Tier II+ during development. The RQ-4 provides a broad overview and systematic surveillance using high-resolution synthetic aperture radar (SAR) and electro-optical/infrared (EO/IR) sensors with long loiter times over target areas.
Scaled Composites is an American aerospace company founded by Burt Rutan and currently owned by Northrop Grumman. It is located at the Mojave Air and Space Port in Mojave, California, United States. Founded to develop experimental aircraft, the company now focuses on designing and developing concept craft and prototype fabrication processes for aircraft and other vehicles. It is known for unconventional designs, for its use of non-metal, composite materials, and for winning the Ansari X Prize with its experimental spacecraft SpaceShipOne.
The Northrop Grumman X-47 is a demonstration unmanned combat aerial vehicle. The X-47 began as part of DARPA's J-UCAS program, and is now part of the United States Navy's UCAS-D program to create a carrier-based unmanned aircraft. Unlike the Boeing X-45, initial Pegasus development was company-funded. The original vehicle carries the designation X-47A Pegasus, while the follow-on naval version is designated X-47B.
Pegasus is an air-launched multistage rocket developed by Orbital Sciences Corporation (OSC) and later built and launched by Northrop Grumman. Pegasus is the world's first privately developed orbital launch vehicle. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remained active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft) using a first stage wing and a tail to provide lift and altitude control while in the atmosphere. The first stage does not have a thrust vector control (TVC) system.
The Northrop Grumman E-10 MC2A was planned as a multi-role military aircraft to replace the Boeing 707-based E-3 Sentry and E-8 Joint STARS, the Boeing 747-based E-4B, and the RC-135 Rivet Joint aircraft in US military service. The E-10 was based on the Boeing 767-400ER commercial airplane.
The Northrop Grumman MQ-4C Triton is an American high-altitude long endurance unmanned aerial vehicle (UAV) developed for and flown by the United States Navy and Royal Australian Air Force as a surveillance aircraft. Together with its associated ground control station, it is an unmanned aircraft system (UAS). Developed under the Broad Area Maritime Surveillance (BAMS) program, the Triton is intended to provide real-time intelligence, surveillance and reconnaissance missions (ISR) over vast ocean and coastal regions, continuous maritime surveillance, conduct search and rescue missions, and to complement the Boeing P-8 Poseidon maritime patrol aircraft.
The ADM-160 MALD is an air-launched, expendable decoy missile developed by the United States. Later variants (MALD-J) are additionally equipped with electronic countermeasures to actively jam early warning and target acquisition radars.
The Northrop Grumman MQ-8 Fire Scout is an unmanned autonomous helicopter developed by Northrop Grumman for use by the United States Armed Forces. The Fire Scout is designed to provide reconnaissance, situational awareness, aerial fire support and precision targeting support for ground, air and sea forces. The initial RQ-8A version was based on the Schweizer 330, while the enhanced MQ-8B was derived from the Schweizer 333. The larger MQ-8C Fire Scout variant is based on the Bell 407.
Griffon Aerospace is an aerospace company located in Madison, Alabama with additional offices located in Fort Bliss, TX. Griffon designs, develops, and operates aerospace systems including manned and unmanned aircraft, UAV ground support systems, and advanced composite structures. Griffon has produced over 6000 unmanned air vehicles for a variety of customers from US DoD, Foreign Military Sales, Commercial Businesses, and University research labs.
The Environmental Research Aircraft and Sensor Technology, or ERAST program was a NASA program to develop cost-effective, slow-flying unmanned aerial vehicles (UAVs) that can perform long-duration science missions at altitudes above 60,000 ft (18,000 m). The project included a number of technology development programs conducted by the joint NASA-industry ERAST Alliance. The project was formally terminated in 2003.
The General Atomics Altus is an unmanned aerial vehicle, designed for scientific research, built by General Atomics Aeronautical Systems (GA-ASI).
The Northrop Grumman Bat is a medium-altitude unmanned air vehicle originally developed for use by the United States Armed Forces. Designed primarily as an intelligence "ISR" gathering tool, the Bat features 30 lb (14 kg) payload capacity and a 10 ft (3.0 m) wing span.
The Multi-Platform Radar Technology Insertion Program (MP-RTIP), is a U.S. Air Force project led by contractor Northrop Grumman to develop the next generation of airborne air-to-air and air-to-ground radar systems. While initially planned for multiple platforms, the MP-RTIP is currently intended only for the RQ-4B Global Hawk UAV.
Project CHLOE is a research and development program of the Department of Homeland Security (DHS) to explore technology-based unmanned aerial vehicle (UAV) mounted defenses for airports and airliners against the threat of infrared man-portable anti-aircraft missiles. The project's name refers to the character Chloe O'Brian on the television show 24, which is Former Homeland Security Secretary Michael Chertoff's favorite show.
A high-altitude platform station, also known as atmospheric satellite, is a long endurance, high altitude aircraft able to offer observation or communication services similarly to artificial satellites. Mostly unmanned aerial vehicles (UAVs), they remain aloft through atmospheric lift, either aerodynamic like airplanes, or aerostatic like airships or balloons. High-altitude long endurance (HALE) military drones can fly above 60,000 ft over 32 hours, while civil HAPS are radio stations at an altitude of 20 to 50 km above waypoints, for weeks.
Aurora Flight Sciences (AFS) is an American aviation and aeronautics research subsidiary of Boeing that specializes in special-purpose unmanned aerial vehicles. Aurora's headquarters is at Manassas Regional Airport.
KQ-X was a $33 million DARPA program awarded to Northrop Grumman on July 1, 2010. KQ-X investigated and developed autonomous aerial refueling techniques using two NASA Global Hawk high-altitude long endurance (HALE) unmanned aerial vehicles (UAVs).
The Northrop Grumman Firebird is an intelligence gathering aircraft designed by Northrop Grumman's subsidiary Scaled Composites which can be flown remotely or by a pilot. At Scaled, it is known as the Model 355. It was unveiled on May 9, 2011. It was first flown in February 2010 and is considered to be an optionally piloted vehicle (OPV).
The Scaled Composites Model 351 Stratolaunch or Roc is an aircraft built by Scaled Composites for Stratolaunch Systems to carry air-launch-to-orbit (ALTO) rockets, and subsequently repurposed to offer air launch hypersonic flight testing after a change of ownership. It was announced in December 2011, rolled out in May 2017, and flew for the first time on April 13, 2019, shortly after the death of founder Paul Allen. The aircraft features a twin-fuselage design and the longest wingspan ever flown, at 385 feet (117 m), surpassing the Hughes H-4 Hercules "Spruce Goose" flying boat of 321 feet (98 m). The Stratolaunch is intended to carry a 550,000-pound (250 t) payload and has a 1,300,000-pound (590 t) maximum takeoff weight.
The Northrop Grumman MQ-8C Fire Scout is an unmanned helicopter developed by Northrop Grumman for use by the United States Navy. The MQ-8C also has autonomous take-off and landing capability. It is designed to provide reconnaissance, situational awareness, aerial fire support and precision targeting support for ground, air and sea forces. The MQ-8C airframe is based on the Bell 407, while the avionics and other systems are developed from those used on the MQ-8B Fire Scout. It first flew in October 2013 and achieved initial operational capability on 28 June 2019.