Scanning capacitance microscopy

Last updated

Scanning capacitance microscopy (SCM) is a variety of scanning probe microscopy in which a narrow probe electrode is positioned in contact or close proximity of a sample's surface and scanned. SCM characterizes the surface of the sample using information obtained from the change in electrostatic capacitance between the surface and the probe.

Contents

History

The name Scanning Capacitance Microscopy was first used to describe a quality control tool for the RCA/CED (Capacitance Electronic Disc), [1] a video disk technology that was a predecessor of the DVD. It has since been adapted for use in combination with scanned probe microscopes for measuring other systems and materials with semiconductor doping profiling being the most prevalent.

SCM applied to semiconductors uses an ultra-sharp conducting probe (often Pt/Ir or Co/Cr thin film metal coating applied to an etched silicon probe) to form a metal-insulator-semiconductor (MIS/MOS) capacitor with a semiconductor sample if a native oxide is present. When no oxide is present, a Schottky capacitor is formed. With the probe and surface in contact, a bias applied between the tip and sample will generate capacitance variations between the tip and sample. The capacitance microscopy method developed by Williams et al. used the RCA video disk capacitance sensor connected to the probe to detect the tiny changes in semiconductor surface capacitance (attofarads to femptofarads). The tip is then scanned across the semiconductor's surface in while the tip's height is controlled by conventional contact force feedback.

By applying an alternating bias to the metal-coated probe, carriers are alternately accumulated and depleted within the semiconductor's surface layers, changing the tip-sample capacitance. The magnitude of this change in capacitance with the applied voltage gives information about the concentration of carriers (SCM amplitude data), whereas the difference in phase between the capacitance change and the applied, alternating bias carries information about the sign of the charge carriers (SCM phase data). Because SCM functions even through an insulating layer, a finite conductivity is not required to measure the electrical properties.

Resolution

On the conducting surfaces, the resolution limit is estimated as 2 nm. [2] For the high resolution, the quick analysis of capacitance of a capacitor with rough electrode is required. [3] [4] This SCM resolution is an order of magnitude better than that estimated for the atomic nanoscope; however, as other kinds of the probe microscopy, SCM requires careful preparation of the analyzed surface, which is supposed to be almost flat.

Applications

Owing to the high spatial resolution of SCM, [2] it is a useful nanospectroscopy characterization tool. Some applications of the SCM technique involve mapping the dopant profile in a semiconductor device on a 10 nm scale, [5] quantification of the local dielectric properties in hafnium-based high-k dielectric films grown by an atomic layer deposition method [6] and the study of the room temperature resonant electronic structure of individual germanium quantum dot with different shapes. [7] The high sensitivity of dynamical scanning capacitance microscopy, [8] in which the capacitance signal is modulated periodically by the tip motion of the atomic force microscope (AFM), was used to image compressible and incompressible strips in a two-dimensional electron gas (2DEG) buried 50 nm below an insulating layer in a large magnetic field and at cryogenic temperatures. [9]

Related Research Articles

Cathodoluminescence

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

Atomic force microscopy Type of microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.

Kelvin probe force microscope Noncontact variant of atomic force microscopy

Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features. When there is little or no magnification, this approach can be described as using a scanning Kelvin probe (SKP). These techniques are predominantly used to measure corrosion and coatings.

The term high-κ dielectric refers to a material with a high dielectric constant, as compared to silicon dioxide. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law. Sometimes these materials are called "high-k", instead of "high-κ".

Focused ion beam Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

Near-field scanning optical microscope

Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.

Spin-polarized scanning tunneling microscopy (SP-STM) is a type of scanning tunneling microscope (STM) that can provide detailed information of magnetic phenomena on the single-atom scale additional to the atomic topography gained with STM. SP-STM opened a novel approach to static and dynamic magnetic processes as precise investigations of domain walls in ferromagnetic and antiferromagnetic systems, as well as thermal and current-induced switching of nanomagnetic particles.

Scanning Hall probe microscope

Scanning Hall probe microscope (SHPM) is a variety of a scanning probe microscope which incorporates accurate sample approach and positioning of the scanning tunnelling microscope with a semiconductor Hall sensor. Developed in 1996 by Oral, Bending and Henini, SHPM allows mapping the magnetic induction associated with a sample. Current state of the art SHPM systems utilize 2D electron gas materials to provide high spatial resolution (~300 nm) imaging with high magnetic field sensitivity. Unlike the magnetic force microscope the SHPM provides direct quantitative information on the magnetic state of a material. The SHPM can also image magnetic induction under applied fields up to ~1 tesla and over a wide range of temperatures.

Scanning thermal microscopy

Scanning thermal microscopy (SThM) is a type of scanning probe microscopy that maps the local temperature and thermal conductivity of an interface. The probe in a scanning thermal microscope is sensitive to local temperatures – providing a nano-scale thermometer. Thermal measurements at the nanometer scale are of both scientific and industrial interest.

Conductive atomic force microscopy

Conductive atomic force microscopy (C-AFM) or current sensing atomic force microscopy (CS-AFM) is a mode in atomic force microscopy (AFM) that simultaneously measures the topography of a material and the electric current flow at the contact point of the tip with the surface of the sample. The topography is measured by detecting the deflection of the cantilever using an optical system, while the current is detected using a current-to-voltage preamplifier. The fact that the CAFM uses two different detection systems is a strong advantage compared to scanning tunneling microscopy (STM). Basically, in STM the topography picture is constructed based on the current flowing between the tip and the sample. Therefore, when a portion of a sample is scanned with an STM, it is not possible to discern if the current fluctuations are related to a change in the topography or to a change in the sample conductivity.

Piezoresponse force microscopy Microscopy technique for piezoelectric materials

Piezoresponse force microscopy (PFM) is a variant of atomic force microscopy (AFM) that allows imaging and manipulation of piezoelectric/ferroelectric materials domains. This is achieved by bringing a sharp conductive probe into contact with a ferroelectric surface and applying an alternating current (AC) bias to the probe tip in order to excite deformation of the sample through the converse piezoelectric effect (CPE). The resulting deflection of the probe cantilever is detected through standard split photodiode detector methods and then demodulated by use of a lock-in amplifier (LiA). In this way topography and ferroelectric domains can be imaged simultaneously with high resolution.

Thermal scanning probe lithography

Thermal scanning probe lithography (t-SPL) is a form of scanning probe lithography (SPL) whereby material is structured on the nanoscale using scanning probes, primarily through the application of thermal energy.

The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy. This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously.

NanoWorld

NanoWorld is the global market leader for tips for scanning probe microscopy (SPM) and atomic force microscopy (AFM). The atomic force microscope (AFM) is the defining instrument for the whole field of nanoscience and nanotechnology. It enables its users in research and high-tech industry to investigate materials at the atomic scale. AFM probes are the key consumable, the “finger” that enables the scientist to scan surfaces point-by-point at the atomic scale. Consistent high quality of the scanning probes is vital for reproducible results.

Nanosensors is a brand of SPM and AFM probes for atomic force microscopy (AFM) and scanning probe microscopy (SPM).

Non-contact atomic force microscopy

Non-contact atomic force microscopy (nc-AFM), also known as dynamic force microscopy (DFM), is a mode of atomic force microscopy, which itself is a type of scanning probe microscopy. In nc-AFM a sharp probe is moved close to the surface under study, the probe is then raster scanned across the surface, the image is then constructed from the force interactions during the scan. The probe is connected to a resonator, usually a silicon cantilever or a quartz crystal resonator. During measurements the sensor is driven so that it oscillates. The force interactions are measured either by measuring the change in amplitude of the oscillation at a constant frequency just off resonance or by measuring the change in resonant frequency directly using a feedback circuit to always drive the sensor on resonance.

The operation of a photon scanning tunneling microscope (PSTM) is analogous to the operation of an electron scanning tunneling microscope, with the primary distinction being that PSTM involves tunneling of photons instead of electrons from the sample surface to the probe tip. A beam of light is focused on a prism at an angle greater than the critical angle of the refractive medium in order to induce total internal reflection within the prism. Although the beam of light is not propagated through the surface of the refractive prism under total internal reflection, an evanescent field of light is still present at the surface.

A probe tip is an instrument used in scanning probe microscopes (SPM) to scan the surface of a sample and make nano-scale images of surfaces and structures. The probe tip is mounted on the end of a cantilever and can be as sharp as a single atom. In microscopy, probe tip geometry and the composition of both the tip and the surface being probed directly affect resolution and imaging quality. Tip size and shape are extremely important in monitoring and detecting interactions between surfaces. SPMs can precisely measure electrostatic forces, magnetic forces, chemical bonding, Van der Waals forces, and capillary forces. SPMs can also reveal the morphology and topography of a surface.

Multi-tip scanning tunneling microscopy

Multi-tip scanning tunneling microscopy extends scanning tunneling microscopy (STM) from imaging to dedicated electrical measurements at the nanoscale like a ″multimeter at the nanoscale″. In materials science, nanoscience, and nanotechnology, it is desirable to measure electrical properties at a particular position of the sample. For this purpose, multi-tip STMs in which several tips are operated independently have been developed. Apart from imaging the sample, the tips of a multi-tip STM are used to form contacts to the sample at desired locations and to perform local electrical measurements.

References

  1. Matey, JR; J Blanc (1985). "Scanning Capacitance Microscopy". Journal of Applied Physics. 57 (5): 1437–1444. Bibcode:1985JAP....57.1437M. doi:10.1063/1.334506.
  2. 1 2 Lanyi S; Hruskovic M (2003). "The resolution limit of scanning capacitance microscopes". Journal of Physics D. 36 (5): 598–602. doi:10.1088/0022-3727/36/5/326.
  3. N.C.Bruce; A.Garcia-Valenzuela, D.Kouznetsov (2000). "The lateral resolution limit for imaging periodic conducting surfaces in capacitive microscopy". Journal of Physics D. 33 (22): 2890–2898. Bibcode:2000JPhD...33.2890B. doi:10.1088/0022-3727/33/22/305.
  4. N.C.Bruce; A.Garcia-Valenzuela, D.Kouznetsov (1999). "Rough-surface capacitor: approximations of the capacitance with elementary functions". Journal of Physics D. 32 (20): 2692–2702. Bibcode:1999JPhD...32.2692B. doi:10.1088/0022-3727/32/20/317.
  5. C.C. Williams (1999). "Two-dimensional dopant profiling by scanning capacitance microscopy". Annual Review of Materials Research . 29: 471–504. Bibcode:1999AnRMS..29..471W. doi:10.1146/annurev.matsci.29.1.471.
  6. Y. Naitou; A. Ando; H. Ogiso; S. Kamiyama; Y. Nara; K. Nakamura (2005). "Spatial fluctuation of dielectric properties in Hf-based high-k gate films studied by scanning capacitance microscopy". Applied Physics Letters . 87 (25): 252908–1 to 252908–3. Bibcode:2005ApPhL..87y2908N. doi:10.1063/1.2149222.
  7. Kin Mun Wong (2009). "Study of the electronic structure of individual free-standing germanium nanodots using spectroscopic scanning capacitance microscopy". Japanese Journal of Applied Physics . 48 (8): 085002–1 to 085002–12. Bibcode:2009JaJAP..48h5002W. doi: 10.1143/JJAP.48.085002 .
  8. A. Baumgartner; M.E. Suddards & C.J. Mellor (2009). "Low-temperature and high magnetic field dynamic scanning capacitance microscope". Review of Scientific Instruments. 80 (1): 013704. arXiv: 0812.4146 . Bibcode:2009RScI...80a3704B. doi:10.1063/1.3069289. PMID   19191438.
  9. M.E. Suddards, A. Baumgartner, M. Henini and C.J. Mellor (2012). "Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips". New Journal of Physics. 14: 083015. arXiv: 1202.3315 . Bibcode:2012NJPh...14h3015S. doi:10.1088/1367-2630/14/8/083015.{{cite journal}}: CS1 maint: multiple names: authors list (link)